36 research outputs found

    Defect detection in nano-scale transistors based on radio-frequency reflectometry

    Full text link
    Radio-frequency reflectometry in silicon single-electron transistors (SETs) is presented. At low temperatures (<4 K), in addition to the expected Coulomb blockade features associated with charging of the SET dot, quasi-periodic oscillations are observed that persist in the fully depleted regime where the SET dot is completely empty. A model, confirmed by simulations, indicates that these oscillations originate from charging of an unintended floating gate located in the heavily doped polycrystalline silicon gate stack. The technique used in this experiment can be applied for detailed spectroscopy of various charge defects in nanoscale SETs and field effect transistorsComment: 3 pages, 3 figure

    Dopant effects on the photoluminescence of interstitial-related centers in ion implanted silicon

    No full text
    The dopant dependence of photoluminescence(PL) from interstitial-related centers formed by ion implantation and a subsequent anneal in the range 175–525 °C is presented. The evolution of these centers is strongly effected by interstitial-dopant clustering even in the low temperature regime. There is a significant decrease in the W line (1018.2 meV) PL intensity with increasing B concentration. However, an enhancement is also observed in a narrow fabrication window in samples implanted with either P or Ga. The annealtemperature at which the W line intensity is optimized is sensitive to the dopant concentration and type. Furthermore, dopants which are implanted but not activated prior to low temperature thermal processing are found to have a more detrimental effect on the resulting PL. Splitting of the X line (1039.8 meV) arising from implantation damage induced strain is also observed.This work is supported by a grant from the Australian Research Council. B.C.J. is partially supported by the Japan Society for the Promotion of Science (JSPS) (Grant-in-aid for Scientific Research, 22.00802)

    Understanding resonant charge transport through weakly coupled single-molecule junctions

    Get PDF
    Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and it is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of the non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model the overall charge transport as a sequence of non-adiabatic electron transfers, the rates of which depend on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to the interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s

    Corrigendum: Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out

    Get PDF
    The ability to control dynamics of quantum states by optical interference, and subsequent electrical read-out, is crucial for solid state quantum technologies. Ramsey interference has been successfully observed for spins in silicon and nitrogen vacancy centres in diamond, and for orbital motion in InAs quantum dots. Here we demonstrate terahertz optical excitation, manipulation and destruction via Ramsey interference of orbital wavepackets in Si:P with electrical read-out. We show milliradian control over the wavefunction phase for the two-level system formed by the 1s and 2p states. The results have been verified by all-optical echo detection methods, sensitive only to coherent excitations in the sample. The experiments open a route to exploitation of donors in silicon for atom trap physics, with concomitant potential for quantum computing schemes, which rely on orbital superpositions to, for example, gate the magnetic exchange interactions between impurities

    Brain-behaviour modes of covariation in healthy and clinically depressed young people.

    Get PDF
    Understanding how variations in dimensions of psychometrics, IQ and demographics relate to changes in brain connectivity during the critical developmental period of adolescence and early adulthood is a major challenge. This has particular relevance for mental health disorders where a failure to understand these links might hinder the development of better diagnostic approaches and therapeutics. Here, we investigated this question in 306 adolescents and young adults (14-24 y, 25 clinically depressed) using a multivariate statistical framework, based on canonical correlation analysis (CCA). By linking individual functional brain connectivity profiles to self-report questionnaires, IQ and demographic data we identified two distinct modes of covariation. The first mode mapped onto an externalization/internalization axis and showed a strong association with sex. The second mode mapped onto a well-being/distress axis independent of sex. Interestingly, both modes showed an association with age. Crucially, the changes in functional brain connectivity associated with changes in these phenotypes showed marked developmental effects. The findings point to a role for the default mode, frontoparietal and limbic networks in psychopathology and depression.Wellcome Trus

    Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity

    Get PDF
    Healthy ageing has disparate effects on different cognitive domains. The neural basis of these differences, however, is largely unknown. We investigated this question by using Independent Components Analysis to obtain functional brain components from 98 healthy participants aged 23-87 years from the population-based Cam-CAN cohort. Participants performed two cognitive tasks that show age-related decrease (fluid intelligence and object naming) and a syntactic comprehension task that shows age-related preservation. We report that activation of task-positive neural components predicts inter-individual differences in performance in each task across the adult lifespan. Furthermore, only the two tasks that show performance declines with age show age-related decreases in task-positive activation of neural components and decreasing default mode (DM) suppression. Our results suggest that distributed, multi-component brain responsivity supports cognition across the adult lifespan, and the maintenance of this, along with maintained DM deactivation, characterizes successful ageing and may explain differential ageing trajectories across cognitive domains

    Multiple determinants of lifespan memory differences

    Get PDF
    Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss
    corecore