224 research outputs found

    The humanitarian emergency in Burundi: evaluation of the operational strategy for management of nutritional crisis

    Get PDF
    AbstractObjectiveTo evaluate the impact and appropriateness of programmes for the management and treatment of severe malnutrition in emergency situations.DesignA central unified database was set up with all data and statistics provided by nutritional centres (NC) active in Burundi.SettingThe paper describes the case of Burundi as an example of the response of the humanitarian community to nutritional crisis.SubjectsSince 1999, more than one million (1 054 210) severely malnourished patients were treated in NC established in Burundi.ResultsPeaks of beneficiaries were registered in 2000 and 2001; the admission rate started to decrease in 2002. In 2004, twenty therapeutic feeding centres (TFC) and 224 supplementary feeding centres (SFC) were active for the treatment of 127 420 beneficiaries. Nutritional programmes were present in every province with a coverage rate of 55 %. The most convincing impact of the nutritional programme in Burundi was the reduction of mortality rate in children under 5 years of age; an impact on the prevalence of acute malnutrition could not be demonstrated. Children under 5 years old accounted for 62 % of beneficiaries in TFC and 76 % in SFC. TFC performance indicators fulfilled the minimum standards in disaster response; the performance of SFC was not so optimal with a low recovery rate (69 % v. >80 %) and a high non-respondent rate (16 % v. <5 %). With the combination of coverage and cure rate, the programme met 44 % of the assessed needs in 2004.ConclusionsIn Burundi the stabilisation of security conditions permitted a combination of humanitarian responses ranging from emergency activities to strengthening of community-based initiatives that could correct the coverage and impact limitations

    Fathead minnow steroidogenesis: in silico analyses reveals tradeoffs between nominal target efficacy and robustness to cross-talk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interpreting proteomic and genomic data is a major challenge in predictive ecotoxicology that can be addressed by a systems biology approach. Mathematical modeling provides an organizational platform to consolidate protein dynamics with possible genomic regulation. Here, a model of ovarian steroidogenesis in the fathead minnow, <it>Pimephales promelas</it>, (FHM) is developed to evaluate possible transcriptional regulation of steroid production observed in microarray studies.</p> <p>Results</p> <p>The model was developed from literature sources, integrating key signaling components (G-protein and PKA activation) with their ensuing effect on steroid production. The model properly predicted trajectory behavior of estradiol and testosterone when fish were exposed to fadrozole, a specific aromatase inhibitor, but failed to predict the steroid hormone behavior occurring one week post-exposure as well as the increase in steroid levels when the stressor was removed. In vivo microarray data implicated three modes of regulation which may account for over-production of steroids during a depuration phase (when the stressor is removed): P450 enzyme up-regulation, inhibin down-regulation, and luteinizing hormone receptor up-regulation. Simulation studies and sensitivity analysis were used to evaluate each case as possible source of compensation to endocrine stress.</p> <p>Conclusions</p> <p>Simulation studies of the testosterone and estradiol response to regulation observed in microarray data supported the hypothesis that the FHM steroidogenesis network compensated for endocrine stress by modulating the sensitivity of the ovarian network to global cues coming from the hypothalamus and pituitary. Model predictions of luteinizing hormone receptor regulation were consistent with depuration and in vitro data. These results challenge the traditional approach to network elucidation in systems biology. Generally, the most sensitive interactions in a network are targeted for further elucidation but microarray evidence shows that homeostatic regulation of the steroidogenic network is likely maintained by a mildly sensitive interaction. We hypothesize that effective network elucidation must consider both the sensitivity of the target as well as the target's robustness to biological noise (in this case, to cross-talk) when identifying possible points of regulation.</p

    Direct Effects, Compensation, and Recovery in Female Fathead Minnows Exposed to a Model Aromatase Inhibitor

    Get PDF
    BackgroundSeveral chemicals in the environment have the potential to inhibit aromatase, an enzyme critical to estrogen synthesis.ObjectivesThe objective of this study was to provide a detailed characterization of molecular and biochemical responses of female fathead minnows to a model aromatase inhibitor, fadrozole (FAD).MethodsFish were exposed via water to 0, 3, or 30 microg FAD/L for 8 days and then held in clean water for 8 days, with samples collected at four time points during each 8-day period. We quantified ex vivo steroid production, plasma steroids, and plasma vitellogenin (Vtg) concentrations and analyzed relative transcript abundance of 10 key regulatory genes in ovaries and 3 in pituitary tissue by real-time polymerase chain reaction.ResultsEx vivo 17beta-estradiol (E2) production and plasma E2 and Vtg concentrations were significantly reduced after a single day of exposure to 3 microg or 30 microg FAD/L. However, plasma E2 concentrations recovered by the eighth day of exposure in the 3-microg/L group and within 1 day of cessation of exposure in the 30-microg/L group, indicating concentration- and time-dependent physiologic compensation and recovery. Concentration-dependent increases in transcripts coding for aromatase (A isoform), cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, and follicle-stimulating hormone receptor all coincided with increased E2 production and recovery of plasma E2 concentrations.ConclusionsResults of this research highlight the need to consider compensation/adaptation and recovery when developing and interpreting short-term bioassays or biomarkers or when trying to predict the effects of chemical exposures based on mode of action

    Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (<it>Pimephales promelas</it>) for 48 hours via the water to 2, 5, 10, and 50 ng 17α-ethinylestradiol (EE<sub>2</sub>)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE<sub>2</sub>/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels.</p> <p>Results</p> <p>Steroidogenesis was down-regulated by EE<sub>2 </sub>as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE<sub>2</sub>/L or with the mixture of 5 ng EE<sub>2</sub>/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE<sub>2 </sub>were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern.</p> <p>Conclusion</p> <p>Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens.</p

    Reciprocal regulation of the basic helix-loop-helix/Per-Arnt-Sim partner proteins, Arnt and Arnt2, during neuronal differentiation

    Get PDF
    Basic helix–loop–helix/Per–Arnt–Sim (bHLH/PAS) transcription factors function broadly in development, homeostasis and stress response. Active bHLH/PAS heterodimers consist of a ubiquitous signal-regulated subunit (e.g., hypoxia-inducible factors, HIF-1α/2α/3α; the aryl hydrocarbon receptor, AhR) or tissue-restricted subunit (e.g., NPAS1/3/4, Single Minded 1/2), paired with a general partner protein, aryl hydrocarbon receptor nuclear translocator (Arnt or Arnt2). We have investigated regulation of the neuron-enriched Arnt paralogue, Arnt2. We find high Arnt/Arnt2 ratios in P19 embryonic carcinoma cells and ES cells are dramatically reversed to high Arnt2/Arnt on neuronal differentiation. mRNA half-lives of Arnt and Arnt2 remain similar in both parent and neuronal differentiated cells. The GC-rich Arnt2 promoter, while heavily methylated in Arnt only expressing hepatoma cells, is methylation free in P19 and ES cells, where it is bivalent with respect to active H3K4me3 and repressive H3K27me3 histone marks. Typical of a ‘transcription poised’ developmental gene, H3K27me3 repressive marks are removed from Arnt2 during neuronal differentiation. Our data are consistent with a switch to predominant Arnt2 expression in neurons to allow specific functions of neuronal bHLH/PAS factors and/or to avoid neuronal bHLH/PAS factors from interfering with AhR/Arnt signalling.Nan Hao, Veronica L. D. Bhakti, Daniel J. Peet and Murray L. Whitela

    Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model

    Full text link
    Various assays with adult fish have been developed to identify potential endocrine-disrupting chemicals (EDCs) which may cause toxicity via alterations in the hypothalamic-pituitary-gonadal (HPG) axis. These assays can be sensitive and highly diagnostic for key mechanisms such as agonism of the estrogen and androgen receptors (ERs, ARs) and inhibition of steroid synthesis. However, most of the tests do not unambiguously identify AR antagonists. The purpose of this work was to explore the utility of a mixture test design with the fathead minnow (Pimephales promelas) for detecting different classes of EDCs including AR antagonists. Adults of both sexes were exposed via the water to EDCs with diverse mechanisms of action in the absence or presence of 17beta-trenbolone (TB), a potent AR agonist which masculinizes female fathead minnows. Similar to previous studies with the model AR antagonists flutamide and vinclozolin, exposure of females to the AR antagonist cyproterone acetate in the presence of TB decreased expression of an easily-observed masculinization response, nuptial tubercle formation. Mixture studies with TB and the model ER agonists, 17alpha-ethinylestradiol and bisphenol A, also showed inhibition of tubercle formation in the females, but unlike the AR antagonists, the estrogens markedly induced synthesis of vitellogenin (VTG: egg yolk protein), particularly in males. The ER agonists also offset TB-induced depressions in plasma VTG concentrations in female fish. Additional mixture experiments were conducted with TB and triclocarban, an anti-microbial reported to enhance AR-mediated responses, or ammonia, a "negative control" with no known direct effects on HPG function. Neither chemical affected VTG status in males or females in the absence or presence of TB; however, both slightly enhanced TB-induced tubercle formation in females. Based on studies described herein and elsewhere with the fathead minnow, a TB co-exposure assay appears to be an effective approach for clearly identifying AR antagonists as well as potential EDCs with other relevant mechanisms of action

    Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.

    Get PDF
    Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations

    Epitaxial Growth and Processing of Compound Semiconductors

    Get PDF
    Contains an introduction and reports on three research projects.MIT Lincoln LaboratoryU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126National Science Foundation Grant DMR 94-00334Joint Services Electronics Progra
    • 

    corecore