44 research outputs found

    0059 : Non invasive ultrasonic chordal cutting

    Get PDF
    ObjectiveChordal cutting targeting leaflet tethering has been described to improve the efficiency of annuloplasty during ischemic mitral regurgitation surgery. Histotripsy is an ultrasound based technique for tissue fragmentation through the cavitation generated by a very intense ultrasonic pulse. In this study we investigate the feasibility of using histotripsy for chordal cutting to avoid cardiopulmonary bypass and invasive surgery in infarcted heart.MethodsExperiments were performed in vitro in explanted sheep heart (N=10) and in vivo in sheep beating heart (N=5, 40+/-4kg). In vitro, the mitral valve basal chordae was removed, fixed on a holder in a water tank. The ultrasound pulses were emitted from the therapeutic device (1- MHz focused transducer, pulses of 8μs duration, peak negative pressure of 17 MPa, repetition frequency of 100Hz) placed at a distance of 64mm. In vivo, we performed sternotomy and the device was applied on the thorax cavity which was filled out with water. We analysed MV coaptation and chordae by real time 3D echocardiography. The animals were sacrificed at the end of the procedure, for postmortem anatomical exploration of the heart.ResultsIn vitro, all the basal chordae were completely cut. The mean procedure time was 5.5 (+/-1.7) minutes. The diameter of the chordae was the main criteria affecting the duration of procedure. In the sheep, central basal chordae of anterior leaflet were completely cut. The mean procedure time was 22 (+/-9) minutes. By echography, the sectioned chordae was visible and no mitral valve prolapse was found. All the postmortem anatomical exploration of hearts confirmed the section of the basal chordea. No additional lesions were objectified.ConclusionsNoninvasive ultrasound histotripsy succeed to cut mitral valve basal chordae in vitro and in vivo in beating heart. If positive, this will open the door of completely noninvasive technique for MV repair especially in case of ischemic or functional MR

    Imaging the dynamics of cardiac fiber orientation in vivo using 3D Ultrasound Backscatter Tensor Imaging

    Full text link
    The assessment of myocardial fiber disarray is of major interest for the study of the progression of myocardial disease. However, time-resolved imaging of the myocardial structure remains unavailable in clinical practice. In this study, we introduce 3D Backscatter Tensor Imaging (3D-BTI), an entirely novel ultrasound-based imaging technique that can map the myocardial fibers orientation and its dynamics with a temporal resolution of 10 ms during a single cardiac cycle, non-invasively and in vivo in entire volumes. 3D-BTI is based on ultrafast volumetric ultrasound acquisitions, which are used to quantify the spatial coherence of backscattered echoes at each point of the volume. The capability of 3D-BTI to map the fibers orientation was evaluated in vitro in 5 myocardial samples. The helicoidal transmural variation of fiber angles was in good agreement with the one obtained by histological analysis. 3D-BTI was then performed to map the fiber orientation dynamics in vivo in the beating heart of an open-chest sheep at a volume rate of 90 volumes/s. Finally, the clinical feasibility of 3D-BTI was shown on a healthy volunteer. These initial results indicate that 3D-BTI could become a fully non-invasive technique to assess myocardial disarray at the bedside of patients

    Imaging the dynamics of cardiac fiber orientation in vivo using 3D Ultrasound Backscatter Tensor Imaging

    Get PDF
    ABSTRACT: The assessment of myocardial fiber disarray is of major interest for the study of the progression of myocardial disease. However, time-resolved imaging of the myocardial structure remains unavailable in clinical practice. In this study, we introduce 3D Backscatter Tensor Imaging (3D-BTI), an entirely novel ultrasound-based imaging technique that can map the myocardial fibers orientation and its dynamics with a temporal resolution of 10 ms during a single cardiac cycle, non-invasively and in vivo in entire volumes. 3D-BTI is based on ultrafast volumetric ultrasound acquisitions, which are used to quantify the spatial coherence of backscattered echoes at each point of the volume. The capability of 3D-BTI to map the fibers orientation was evaluated in vitro in 5 myocardial samples. The helicoidal transmural variation of fiber angles was in good agreement with the one obtained by histological analysis. 3D-BTI was then performed to map the fiber orientation dynamics in vivo in the beating heart of an open-chest sheep at a volume rate of 90 volumes/s. Finally, the clinical feasibility of 3D-BTI was shown on a healthy volunteer. These initial results indicate that 3D-BTI could become a fully non-invasive technique to assess myocardial disarray at the bedside of patients

    Nouvelles applications des ultrasons en cardiologie : quantifier la rigidité des structures cardiaques et la modifier

    No full text
    No abstractCette thèse avait pour but d’élargir le champ d’application des ultrasons en cardiologie, dans le domaine de l’imagerie et dans le domaine de la thérapie. Concernant l’imagerie, ce sont les capacités, les atouts et les limites des ultrasons à hautes cadences d’image (ultrafast echo) qui ont été explorés. Dans un premier temps, nous avons montré la possibilité et l’intérêt d’estimer la rigidité du myocarde par ultrason en pratique clinique, chez l’enfant et chez l’adulte. La technique de l’élastographie par onde de cisaillement, utilisant une nouvelle approche de l’imagerie par sommation cohérente harmonique ultrarapide (imagerie non-linéaire), a été appliquée pour la première fois chez l’humain en cardiologie. De plus, nous avons montré que la rigidité du foie, également estimée grâce à l’élastographie par onde de cisaillement, était directement corrélée aux pressions de remplissage du cœur droit, qui sont difficiles à évaluer de manière quantitative en pratique clinique. Dans un second temps, nous nous sommes intéressés à caractériser l’orientation des fibres myocardiques durant le cycle cardiaque en développant l’imagerie du tenseur de rétrodiffusion ultrasonore en trois dimensions. Le but était de réaliser la preuve de concept sur un cœur battant afin d’ouvrir sur les possibilités d’applications. Dans un troisième temps, le doppler de puissance en ultrafast echo nous a permis d’estimer les capacités des ultrasons à visualiser et analyser les flux (et donc les débits) intra coronariens. C’est à l’heure actuelle la seule technique d’imagerie clinique ayant une résolution spatiale (et temporelle) suffisante pour voir les flux dans des vaisseaux ayant un diamètre inférieur à 500 micromètres. Enfin, l’ultrafast echo nous a permis de visualiser les micro déplacements du myocarde, qui sont eux-mêmes initiés par l’activité électrique intra-myocardique, dans un intervalle de temps très réduit. Ceci est le couplage électromécanique, et y avoir accès par ultrason ouvrirait de multiples perspectives. Nous avons commencé à l’appliquer chez le fœtus humain et chez l’adulte en transthoracique. Concernant la thérapie, nous avons exclusivement utilisé les effets mécaniques des ultrasons focalisés à hautes intensités (phénomène de cavitation). Plusieurs équipes avaient déjà montré que cela était applicable en médecine cardiovasculaire, notamment pour perforer le septum inter-atrial (zone musculaire séparant les deux oreillettes cardiaques) ou pour détruire un thrombus intravasculaire. Nous avons décidé de montrer que le phénomène de cavitation peut avoir deux autres applications distinctes : 1) la section de cordage valvulaire mitral, qui est une technique utilisée actuellement en chirurgie (donc à cœur ouvert et en circulation extra-corporelle) visant à diminuer une fuite valvulaire à cause de cordage restrictif ; 2) l’assouplissement des feuillets valvulaires calcifiés, qui est une maladie représentant un enjeu de santé publique touchant des millions de personnes, et n’ayant à ce jour aucune stratégie non invasive disponible et applicable en pratique clinique. Pour ces deux applications, nous avons réalisé des preuves de concept in vitro puis in vivo à cœur battant, sur modèle animal (ovin). L’application humaine sera la prochaine étape. C’est donc la translation de nouvelles technologies ultrasonores vers des applications cliniques en cardiologie qui a motivé et guidé ce travail de thèse

    Nouvelles applications des ultrasons en cardiologie : quantifier la rigidité des structures cardiaques et la modifier

    No full text
    No abstractCette thèse avait pour but d’élargir le champ d’application des ultrasons en cardiologie, dans le domaine de l’imagerie et dans le domaine de la thérapie. Concernant l’imagerie, ce sont les capacités, les atouts et les limites des ultrasons à hautes cadences d’image (ultrafast echo) qui ont été explorés. Dans un premier temps, nous avons montré la possibilité et l’intérêt d’estimer la rigidité du myocarde par ultrason en pratique clinique, chez l’enfant et chez l’adulte. La technique de l’élastographie par onde de cisaillement, utilisant une nouvelle approche de l’imagerie par sommation cohérente harmonique ultrarapide (imagerie non-linéaire), a été appliquée pour la première fois chez l’humain en cardiologie. De plus, nous avons montré que la rigidité du foie, également estimée grâce à l’élastographie par onde de cisaillement, était directement corrélée aux pressions de remplissage du cœur droit, qui sont difficiles à évaluer de manière quantitative en pratique clinique. Dans un second temps, nous nous sommes intéressés à caractériser l’orientation des fibres myocardiques durant le cycle cardiaque en développant l’imagerie du tenseur de rétrodiffusion ultrasonore en trois dimensions. Le but était de réaliser la preuve de concept sur un cœur battant afin d’ouvrir sur les possibilités d’applications. Dans un troisième temps, le doppler de puissance en ultrafast echo nous a permis d’estimer les capacités des ultrasons à visualiser et analyser les flux (et donc les débits) intra coronariens. C’est à l’heure actuelle la seule technique d’imagerie clinique ayant une résolution spatiale (et temporelle) suffisante pour voir les flux dans des vaisseaux ayant un diamètre inférieur à 500 micromètres. Enfin, l’ultrafast echo nous a permis de visualiser les micro déplacements du myocarde, qui sont eux-mêmes initiés par l’activité électrique intra-myocardique, dans un intervalle de temps très réduit. Ceci est le couplage électromécanique, et y avoir accès par ultrason ouvrirait de multiples perspectives. Nous avons commencé à l’appliquer chez le fœtus humain et chez l’adulte en transthoracique. Concernant la thérapie, nous avons exclusivement utilisé les effets mécaniques des ultrasons focalisés à hautes intensités (phénomène de cavitation). Plusieurs équipes avaient déjà montré que cela était applicable en médecine cardiovasculaire, notamment pour perforer le septum inter-atrial (zone musculaire séparant les deux oreillettes cardiaques) ou pour détruire un thrombus intravasculaire. Nous avons décidé de montrer que le phénomène de cavitation peut avoir deux autres applications distinctes : 1) la section de cordage valvulaire mitral, qui est une technique utilisée actuellement en chirurgie (donc à cœur ouvert et en circulation extra-corporelle) visant à diminuer une fuite valvulaire à cause de cordage restrictif ; 2) l’assouplissement des feuillets valvulaires calcifiés, qui est une maladie représentant un enjeu de santé publique touchant des millions de personnes, et n’ayant à ce jour aucune stratégie non invasive disponible et applicable en pratique clinique. Pour ces deux applications, nous avons réalisé des preuves de concept in vitro puis in vivo à cœur battant, sur modèle animal (ovin). L’application humaine sera la prochaine étape. C’est donc la translation de nouvelles technologies ultrasonores vers des applications cliniques en cardiologie qui a motivé et guidé ce travail de thèse

    New applications of ultrasound in cardiology : quantifying the rigidity of cardiac structures and modifying it

    No full text
    Cette thèse avait pour but d’élargir le champ d’application des ultrasons en cardiologie, dans le domaine de l’imagerie et dans le domaine de la thérapie. Concernant l’imagerie, ce sont les capacités, les atouts et les limites des ultrasons à hautes cadences d’image (ultrafast echo) qui ont été explorés. Dans un premier temps, nous avons montré la possibilité et l’intérêt d’estimer la rigidité du myocarde par ultrason en pratique clinique, chez l’enfant et chez l’adulte. La technique de l’élastographie par onde de cisaillement, utilisant une nouvelle approche de l’imagerie par sommation cohérente harmonique ultrarapide (imagerie non-linéaire), a été appliquée pour la première fois chez l’humain en cardiologie. De plus, nous avons montré que la rigidité du foie, également estimée grâce à l’élastographie par onde de cisaillement, était directement corrélée aux pressions de remplissage du cœur droit, qui sont difficiles à évaluer de manière quantitative en pratique clinique. Dans un second temps, nous nous sommes intéressés à caractériser l’orientation des fibres myocardiques durant le cycle cardiaque en développant l’imagerie du tenseur de rétrodiffusion ultrasonore en trois dimensions. Le but était de réaliser la preuve de concept sur un cœur battant afin d’ouvrir sur les possibilités d’applications. Dans un troisième temps, le doppler de puissance en ultrafast echo nous a permis d’estimer les capacités des ultrasons à visualiser et analyser les flux (et donc les débits) intra coronariens. C’est à l’heure actuelle la seule technique d’imagerie clinique ayant une résolution spatiale (et temporelle) suffisante pour voir les flux dans des vaisseaux ayant un diamètre inférieur à 500 micromètres. Enfin, l’ultrafast echo nous a permis de visualiser les micro déplacements du myocarde, qui sont eux-mêmes initiés par l’activité électrique intra-myocardique, dans un intervalle de temps très réduit. Ceci est le couplage électromécanique, et y avoir accès par ultrason ouvrirait de multiples perspectives. Nous avons commencé à l’appliquer chez le fœtus humain et chez l’adulte en transthoracique. Concernant la thérapie, nous avons exclusivement utilisé les effets mécaniques des ultrasons focalisés à hautes intensités (phénomène de cavitation). Plusieurs équipes avaient déjà montré que cela était applicable en médecine cardiovasculaire, notamment pour perforer le septum inter-atrial (zone musculaire séparant les deux oreillettes cardiaques) ou pour détruire un thrombus intravasculaire. Nous avons décidé de montrer que le phénomène de cavitation peut avoir deux autres applications distinctes : 1) la section de cordage valvulaire mitral, qui est une technique utilisée actuellement en chirurgie (donc à cœur ouvert et en circulation extra-corporelle) visant à diminuer une fuite valvulaire à cause de cordage restrictif ; 2) l’assouplissement des feuillets valvulaires calcifiés, qui est une maladie représentant un enjeu de santé publique touchant des millions de personnes, et n’ayant à ce jour aucune stratégie non invasive disponible et applicable en pratique clinique. Pour ces deux applications, nous avons réalisé des preuves de concept in vitro puis in vivo à cœur battant, sur modèle animal (ovin). L’application humaine sera la prochaine étape. C’est donc la translation de nouvelles technologies ultrasonores vers des applications cliniques en cardiologie qui a motivé et guidé ce travail de thèse.No abstrac

    Les promesses de l'échocardiographie ultrarapide.

    No full text
    International audienc

    Les promesses de l'échocardiographie ultrarapide.

    No full text
    International audienc

    Les promesses de l'échocardiographie ultrarapide.

    No full text
    International audienc
    corecore