11 research outputs found

    Atomistic Insights of Calmodulin Gating of Complete Ion Channels

    Get PDF
    Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.The Government of the Autonomous Community of the Basque Country (IT1165–19) and the Spanish Ministry of Economy, Industry and Competitiveness (RTI2018–097839-B-100) provided financial support for this work. E.N. and A.M-M. were supported by predoctoral contracts of the Basque Government

    Microglia-Mediated Inflammation and Neural Stem Cell Differentiation in Alzheimer’s Disease: Possible Therapeutic Role of KV1.3 Channel Blockade

    Get PDF
    Increase of deposits of amyloid beta peptides in the extracellular matrix is landmark during Alzheimer's Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid beta deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid beta peptides increasing the phagocytic response (CD163, IGF-1 or BDNF) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (TNF-alpha, IL-1beta) in response to reactive gliosis activated by the amyloid beta aggregates. Microglia activation correlated with an increase KV1.3 channels expression, protein levels and current density. Several studies highlight the importance of KV1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid beta accumulation. In recent studies using in vitro cells derived from mice models, it has been demonstrated that KV1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines IL-1beta and TNF-alpha through the NF-kB and p38MAPK pathway. Overall, we conclude that KV1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients.This work was supported by a grant from the MICINN (PID2020-118814RB-I00), the Government of the Autonomous Community of the Basque Country (IT1165-19 and KK-2020/00110), and the Spanish Ministry of Science and Innovation (RTI2018-097839-B-100 to AV)

    Molecular dynamics simulations of the calmodulin-induced α-helix in the SK2 calcium-gated potassium ion channel

    Get PDF
    The family of small-conductance Ca2+-activated potassium ion channels (SK channels) is composed of four members (SK1, SK2, SK3, and SK4) involved in neuron-firing regulation. The gating of these channels depends on the intracellular Ca2+ concentration, and their sensitivity to this ion is provided by calmodulin (CaM). This protein binds to a specific region in SK channels known as the calmodulin-binding domain (CaMBD), an event which is essential for their gating. While CaMBDs are typically disordered in the absence of CaM, the SK2 channel subtype displays a small prefolded α-helical region in its CaMBD even if CaM is not present. This small helix is known to turn into a full α-helix upon CaM binding, although the molecular-level details for this conversion are not fully understood yet. In this work, we offer new insights on this physiologically relevant process by means of enhanced sampling, atomistic Hamiltonian replica exchange molecular dynamics simulations, providing a more detailed understanding of CaM binding to this target. Our results show that CaM is necessary for inducing a full α-helix along the SK2 CaMBD through hydrophobic interactions with V426 and L427. However, it is also necessary that W431 does not compete for these interactions; the role of the small prefolded α-helix in the SK2 CaMBD would be to stabilize W431 so that this is the case. In conclusion, our findings provide further insight into a key interaction between CaM and SK channels that is important for channel sensitivity to Ca2+.The authors thank Donostia International Physics Center (DIPC) for providing access to its computational resources. We acknowledge financial support from the Department of Education, Universities, and Research of the Basque Government and the University of the Basque Country (IT1165-19, KK-2020/00110, and IT1707-22), from the Spanish Ministry of Science and Innovation (projects PID2021-128286NB-100, PID2019-105488GB-I00, TED2021-132074B-C32, and RTI2018-097839-B-100) and from FEDER funds

    The Crossroad of Ion Channels and Calmodulin in Disease

    Get PDF
    Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.The Department of Industry, Tourism and Trade of the Government of the Autonomous Community of the Basque Country (Elkartek 2017 bG17 kk-2017/000843M50.17.EK.C6) and the Spanish Ministry of Economy, Industry and Competitiveness (BFU2015-66910 and RTI2018-097839) provided financial support for this work. E.N. is supported by a predoctoral grant of the Basque Government

    KV7.2 kanala: estruktura, erregulazioa eta kitzikagarritasun neuronalean duen ekintza

    Get PDF
    Potasio-kanalak ia zelula guztien mintzean agertzen dira eta funtzio biologiko garrantzitsuak betetzen dituzte; besteak beste, korronte elektrikoak kontrolatzen dituzte zelula kitzikagarrietan. KV7 kanalen familia 5 kidez osatuta dago (KV7.1-KV7.5), eta horiek kodetzen dituzten geneak patologia esanguratsuekin erlazionatzen dira. KV7 kanalen estrukturak zelula-mintzean txertaturiko 6 segmentuz osaturiko ohiko estruktura partekatzen du; N- eta C-muturrak zelula barnekoak dira. Neuronetan, KV7.2 eta KV7.3 kanalak agertzen dira batik bat; M-korrontea sortuz, neuronen kitzikagarritasuna kontrolatzen duena. M-korrontearen erregulazioa konplexua da seinaleztapen-bidezidor desberdinen bidez erregula baitaiteke. Gq/11 proteinari akoplaturiko hartzaileen bidez erregulatzen da eta seinaleztapen-bidezidorra desberdina da aktibatutako hartzailearen arabera. Horrela, azetilkolinaren M1 hartzaile muskarinikoak KV7.2-aren korrontea inhibituko du PIP2-aren agorpenaren ondorioz. Bradikininaren hartzaileak, ordea, IP3-ak eragindako kaltzio-kontzentrazioaren igoeraren bidez inhibituko du. Mekanismo horietan, hainbat proteinak hartzen dute parte, hala nola kalmodulinak, proteina kinasek eta ainguratze-proteinek. Berrikuspen honetan, KV7.2 kanalari erreparatuko diogu, hainbat gaixotasunen partaide izateagatik eta haren erregulazio konplexuagatik, ikuspuntu farmakologiko batetik itu interesgarria izan baitaiteke.; Potassium channels are present in almost all cell membranes and perform important biological functions, including electrical currents control in excitable cells. The KV7 channels familiy consists of 5 members (KV7.1-KV7.5) and the genes that encode them are related to significant pathologies. The structure of KV7 channels shares the usual six transmem-brane segment structure, with intracellular N- and C-termini. In neurons, KV7.2 and KV7.3 are the main channels, which generate the M-current that controls neuronal excitability. The M-current regulation is complex as it can be regulated by different signalling pathways. It is regulated by Gq/11-coupled receptors, and the signaling pathway depends on the activated receptor. Thus, the M1 muscarinic acetylcholine receptor inhibits KV7.2 current by PIP2 depletion. While the bradykinin receptor inhibits it through the calcium concentration increase driven by IP3. Among these mechanisms several proteins are involved, such as calmodulin, protein kinases and anchor proteins. In this review we will focus on KV7.2 channel, as it is involved in several diseases and for its complex regulation it can be an interesting target from a pharmacological point of view

    Redox regulation of KV7 channels through EF3 hand of calmodulin

    Get PDF
    Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.Ministerio de Ciencia e Innovacion PID2021-128286NB-100Wellcome Trust 212302/Z/18/ZMedical Research Centre MR/P015727/1Eusko Jaurlaritza IT1707-22 Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza BG2019Ministerio de Ciencia e Innovacion RTI2018-097839-B-100Ministerio de Ciencia e Innovacion RTI2018-101269-B-I00Eusko Jaurlaritza IT1165-19 Ekonomiaren Garapen eta Lehiakortasun Saila,Eusko Jaurlaritza KK-2020/00110Eusko Jaurlaritza PRE_2018-2_0082Eusko Jaurlaritza POS_2021_1_0017Eusko Jaurlaritza PRE_2018-2_012

    An Epilepsy-Causing Mutation Leads to Co-Translational Misfolding of the Kv7.2 Channel

    Get PDF
    BACKGROUND: The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. RESULTS: We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. CONCLUSIONS: Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitroThe Government of the Autonomous Community of the Basque Country (IT1165-19 and KK-2020/00110) and the Spanish Ministry of Science and Innovation (RTI2018-097839-B-100 to A.V. and FIS2016-76617-P to A.B.) and FEDER funds and the US National Institute of Neurological Disorders (NINDS) and Stroke Research Project Grant (R01NS083402 to H.J.C.) provided financial support for this work. E.N. and A.M-M. are supported by predoctoral contracts from the Basque Government administered by University of the Basque Country. C.M. was supported by the Basque Government through a Basque Excellence Research Centre (BERC) grant administered by Fundación Biofisika Bizkaia (FBB). J.U. was partially supported by BERC funds. O.R.B. was supported by the Basque Government through a BERC grant administered by Donostia International Physics Center. J.Z. and H.J.C. was supported by the NINDS Research Project Grant #R01NS083402 (PI: H.J.C.)

    Envejecimiento de la población

    Get PDF
    •Actividades básicas de la vida diaria en personas mayores y factores asociados •Asociación entre depresión y posesión de mascotas en personas mayores •Calidad de vida en adultos mayores de Santiago aplicando el instrumento WHOQOL-BREF •Calidad de vida en usuarios con enfermedad de Parkinson, demencia y sus cuidadores, comuna de Vitacura •Caracterización de egresos hospitalarios de adultos mayores en Puerto Natales (2007-2009) •Comportamiento de las patologías incluidas como GES para el adulto mayor atendido en un Cesfam •Contribución de vitaminas y minerales a las ingestas recomendadas diarias en ancianos institucionalizados de Madrid •Estado de salud oral del paciente inscrito en el Programa de Visita Domiciliaria •Evaluación del programa de discapacidad severa en Casablanca con la matriz de marco lógico •Factores asociados a satisfacción vital en una cohorte de adultos mayores de Santiago, Chile •Pauta instrumental para la identificación de riesgos para el adulto mayor autovalente, en su vivienda •Perfil farmacológico del paciente geriátrico institucionalizado y posibles consecuencias en el deterioro cognitivo •Programa de cuidados paliativos y alivio del dolor en Puerto Natales •Rehabilitación mandibular implantoprotésica: efecto en calidad de vida relacionada con salud bucal en adultos mayores •Salud bucodental en adultos mayores autovalentes de la Región de Valparaíso •Transición epidemiológica y el estudio de carga de enfermedad en Brasi

    Surface Expression and Subunit Specific Control of Steady Protein Levels by the Kv7.2 Helix A-B Linker

    Get PDF
    12 p.Kv7.2 and Kv7.3 are the main components of the neuronal voltage-dependent M-current, which is a subthreshold potassium conductance that exerts an important control on neuronal excitability. Despite their predominantly intracellular distribution, these channels must reach the plasma membrane in order to control neuronal activity. Thus, we analyzed the amino acid sequence of Kv7.2 to identify intrinsic signals that may control its surface expression. Removal of the interlinker connecting helix A and helix B of the intracellular C-terminus produces a large increase in the number of functional channels at the plasma membrane. Moreover, elimination of this linker increased the steady-state amount of protein, which was not associated with a decrease of protein degradation. The magnitude of this increase was inversely correlated with the number of helix A - helix B linkers present in the tetrameric channel assemblies. In contrast to the remarkable effect on the amount of Kv7.2 protein, removal of the Kv7.2 linker had no detectable impact on the steady-state levels of Kv7.3 protein.This work was supported by grants from the VII European framework program managed by the Fondo de Investigaciones Sanitarias (PI071316), from the Spanish Ministry of Education (BFU2009-07581 and SAF2006-1450), the Spanish Ion Channel Initiative Consolider project (CSD2008-00005), and the Basque Government (SAIOTEK SA-2006/00023). A. Alaimo was partially funded by Fundacion Biofisica Bizkaia. PA and JFO held a FPI fellowship from the Spanish Ministry of Science and Innovation (BES-2008-002314). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Pivoting between Calmodulin Lobes Triggered by Calcium in the Kv7.2/Calmodulin Complex

    Get PDF
    Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using N-15-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.This work was supported by grants from the Spanish Ministry of Education (BFU2012-39883 and BFU2009-07581), the Spanish Ion Channel Initiative Consolider project (CSD2008-00005), and the Basque Government (SAIOTEK SA-2006/00023 and 304211ENA9). A. Alaimo and C. Malo were partially funded by Fundacion Biofisica Bizkaia. J. Fernandez-Orth held a FPI fellowship from the Spanish Ministry of Science and Innovation (BES-2008-002314). A. Alberdi holds a JAE-predoctoral CSIC fellowship cofinanced with European Social Funds. G. Bernardo-Seisdedos holds a fellowship from the Basque Country Government (BFI-2011-159). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore