153 research outputs found

    Synthesis of a Novel Boronic Acid Transition State Inhibitor, MB076: A Heterocyclic Triazole Effectively Inhibits Acinetobacter-Derived Cephalosporinase Variants with an Expanded-Substrate Spectrum

    Get PDF
    Class C Acinetobacter-derived cephalosporinases(ADCs) represent an important target for inhibition in the multidrug-resistantpathogen Acinetobacter baumannii. ManyADC variants have emerged, and characterization of their structuraland functional differences is essential. Equally as important is thedevelopment of compounds that inhibit all prevalent ADCs despite thesedifferences. The boronic acid transition state inhibitor, MB076, a novel heterocyclic triazole with improved plasma stability, wassynthesized and inhibits seven different ADC & beta;-lactamase variantswith K (i) values MB076 acted synergistically in combination with multiple cephalosporinsto restore susceptibility. ADC variants containing an alanine duplicationin the & omega;-loop, specifically ADC-33, exhibited increased activityfor larger cephalosporins, such as ceftazidime, cefiderocol, and ceftolozane.X-ray crystal structures of ADC variants in this study provide a structuralcontext for substrate profile differences and show that the inhibitoradopts a similar conformation in all ADC variants, despite small changesnear their active sites

    Disentangling signatures of selection before and after European colonization in latin Americans

    Get PDF
    Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas

    Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems

    Get PDF
    The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multifaceted approach for developing new knowledge and understanding. A multistate, transdisciplinary project was begun in 2011 to study the potential for both mitigation and adaptation of corn-based cropping systems to climate variations. The team is measuring the baseline as well as change of the system\u27s carbon (C), nitrogen (N), and water footprints, crop productivity, and pest pressure in response to existing and novel production practices. Nine states and 11 institutions are participating in the project, necessitating a well thought out approach to coordinating field data collection procedures at 35 research sites. In addition, the collected data must be brought together in a way that can be stored and used by persons not originally involved in the data collection, necessitating robust procedures for linking metadata with the data and clearly delineated rules for use and publication of data from the overall project. In order to improve the ability to compare data across sites and begin to make inferences about soil and cropping system responses to climate across the region, detailed research protocols were developed to standardize the types of measurements taken and the specific details such as depth, time, method, numbers of samples, and minimum data set required from each site. This process required significant time, debate, and commitment of all the investigators involved with field data collection and was also informed by the data needed to run the simulation models and life cycle analyses. Although individual research teams are collecting additional measurements beyond those stated in the standardized protocols, the written protocols are used by the team for the base measurements to be compared across the region. A centralized database was constructed to meet the needs of current researchers on this project as well as for future use for data synthesis and modeling for agricultural, ecosystem, and climate sciences

    Probiotic supplementation influences the diversity of the intestinal microbiota during early stages of farmed Senegalese sole (Solea senegalensis, Kaup, 1858)

    Get PDF
    Ingestion of bacteria at early stages results in establishment of a primary intestinal microbiota which likely undergoes several stages along fish life. The role of this intestinal microbiota regulating body functions is crucial for larval development. Probiotics have been proved to modulate this microbiota and exert antagonistic effects against fish pathogens. In the present study, we aimed to determine bacterial diversity along different developmental stages of farmed Senegalese sole (Solea senegalensis) after feeding probiotic (Shewanella putrefaciens Pdp11) supplemented diet for a short period (10–30 days after hatching, DAH). Intestinal lumen contents of sole larvae fed control and probiotic diets were collected at 23, 56, 87, and 119 DAH and DNA was amplified using 16S rDNA bacterial domain-specific primers. Amplicons obtained were separated by denaturing gradient gel electrophoresis (DGGE), cloned, and resulting sequences compared to sequences in GenBank. Results suggest that Shewanella putrefaciens Pdp11 induces a modulation of the dominant bacterial taxa of the intestinal microbiota from 23 DAH. DGGE patterns of larvae fed the probiotic diet showed a core of bands related to Lactobacillus helveticus, Pseudomonas acephalitica, Vibrio parahaemolyticus,and Shewanella genus, together with increased Vibri o genus presence. In addition, decreased number of clones related to Photobacterium damselae subsp piscicida at 23 and 56 DAH was observed in probiotic-fed larvae. A band corresponding to Shewanella putrefaciens Pdp11 was sequenced as predominant from 23 to 119 DAH samples, confirming the colonization by the probiotics. Microbiota modulation obtained via probiotics addition emerges as an effective tool to improve Solea senegalensis larviculture.En prens

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Application of Direct Renin Inhibition to Chronic Kidney Disease

    Get PDF
    Chronic kidney disease has serious implications with a high risk for progressive loss of renal function, increased cardiovascular events as well as a substantial financial burden. The renin-angiotensin-aldosterone system (RAAS) is activated in chronic kidney disease, especially in diabetes and hypertension, which are the leading causes of chronic kidney disease. Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) decrease the rate of progression of diabetic and non-diabetic nephropathy and are recommended therapy for chronic kidney disease. Key clinical trials supporting the use of ACE inhibitors and ARBs in chronic kidney disease are discussed. Recent developments in our understanding of RAAS biology and the use of direct renin inhibition are reviewed in the context of their potential impact on the prevention and management of chronic kidney disease. Despite the clinical success of ACE inhibitors and ARBs the rates of mortality and progression to renal failure remain high in these patient populations. ACE inhibitor or ARB monotherapy, in doses commonly used in clinical practice does not result in complete suppression of the RAAS. Aliskiren, a direct renin inhibitor, offers a novel approach to inhibit the RAAS in chronic kidney disease. High dose ARB therapy or combination therapies with ACE inhibitors and ARBs have shown beneficial effects on surrogate markers of chronic kidney disease. Early data based on urinary protein excretion rates as a surrogate marker for renal function suggest a possibly novel role for aliskiren alone or in combination with ARBs in chronic kidney disease
    corecore