22 research outputs found

    Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    No full text
    International audienceInsufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments

    Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy.: MEPPC: a new SCN5A-related cardiac channelopathy

    Get PDF
    International audienceOBJECTIVES: The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND: Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS: Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and rare sinus beats competing with numerous premature ventricular contractions with right and/or left bundle branch block patterns were identified. RESULTS: Dilated cardiomyopathy was identified in 6 patients, atrial arrhythmias were detected in 9 patients, and sudden death was reported in 5 individuals. Invasive electrophysiological studies demonstrated that premature ventricular complexes originated from the Purkinje tissue. Hydroquinidine treatment dramatically decreased the number of premature ventricular complexes. It normalized the contractile function in 2 patients. All the affected subjects carried the c.665G>A transition in the SCN5A gene. Patch-clamp studies of resulting p.Arg222Gln (R222Q) Nav1.5 revealed a net gain of function of the sodium channel, leading, in silico, to incomplete repolarization in Purkinje cells responsible for premature ventricular action potentials. In vitro and in silico studies recapitulated the normalization of the ventricular action potentials in the presence of quinidine. CONCLUSIONS: A new SCN5A-related cardiac syndrome, MEPPC, was identified. The SCN5A mutation leads to a gain of function of the sodium channel responsible for hyperexcitability of the fascicular-Purkinje system. The MEPPC syndrome is responsive to hydroquinidine

    Transcriptional regulation of photoprotection in dark-to-light transition—More than just a matter of excess light energy

    No full text
    International audienceIn nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of “photoprotective” genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes ( LHCSR1 , LHCSR3 , and PSBS ) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment

    Transcriptional regulation of photoprotection in dark-to-light transition - more than just a matter of excess light energy

    No full text
    In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce non-photochemical quenching to avoid photo-damage and trigger expression of ‘photoprotective’ genes. In this work, we used the green alga Chlamydomonas reinhardtiiChlamydomonas\ reinhardtii to assess the impact of light intensity, light quality, wavelength, photosynthetic electron transport and CO 2 on induction of the ‘photoprotective’ genes ( LHCSR1 , LHCSR3 and PSBS ) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity, was independently modulated by blue and UV-B radiation through specific photoreceptors, and only LHCSR3 was strongly controlled by CO2_2 levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment

    In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants

    No full text
    International audienceRecently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration

    Photoprotection is regulated by light-independent CO 2 availability

    No full text
    Abstract Photosynthetic algae cope with suboptimal levels of light and CO 2 . In low CO 2 and excess light, the green alga Chlamydomonas reinhardtii activates a CO 2 Concentrating Mechanism (CCM) and photoprotection; the latter is mediated by LHCSR1/3 and PSBS. How light and CO 2 signals converge to regulate photoprotective responses remains unclear. Here we show that excess light activates expression of photoprotection- and CCM-related genes and that depletion of CO 2 drives these responses, even in total darkness. High CO 2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3 and CCM genes while stabilizing the LHCSR1 protein. We also show that CIA5, which controls CCM genes, is a major regulator of photoprotection, elevating LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 accumulation. Our work emphasizes the importance of CO 2 in regulating photoprotection and the CCM, demonstrating that the impact of light on photoprotection is often indirect and reflects intracellular CO 2 levels

    Light-independent regulation of algal photoprotection by CO2 availability

    No full text
    Photosynthetic algae have evolved to survive in suboptimal light and CO2 conditions. Here, the authors show that depletion of CO2 can drive photoprotection and carbon acquisition even in the absence of light, that was previously believed to be indispensable for the activation of these processes

    Clinical aspects and prognosis of Brugada syndrome in children

    No full text
    BACKGROUND: Brugada syndrome is an arrhythmogenic disease characterized by an ECG pattern of ST-segment elevation in the right precordial leads and augmented risk of sudden cardiac death. Little is known about the clinical presentation and prognosis of this disease in children. METHODS AND RESULTS: Thirty children affected by Brugada syndrome who were <16 years of age (mean, 8+/-4 years) were included. All patients displayed a type I ECG pattern before or after drug provocation challenge. Diagnosis of Brugada syndrome was made under the following circumstances: aborted sudden death (n=1), syncope of unexplained origin (n=10), symptomatic supraventricular tachycardia (n=1), suspicious ECG (n=1), and family screening for Brugada syndrome (n=17). Syncope was precipitated by fever in 5 cases. Ten of 11 symptomatic patients displayed a spontaneous type I ECG. An implantable cardioverter-defibrillator was implanted in 5 children; 4 children were treated with hydroquinidine; and 1 child received a pacemaker because of symptomatic sick sinus syndrome. During a mean follow-up of 37+/-23 months, 1 child experienced sudden cardiac death, and 2 children received an appropriate implantable cardioverter-defibrillator shock; all of them were symptomatic and had manifested a type I ECG spontaneously. One child had a cardioverter-defibrillator infection that required explantation of the defibrillator. CONCLUSIONS: In the largest population of children affected by Brugada syndrome described to date, fever represented the most important precipitating factor for arrhythmic events, and as in the adult population, the risk of arrhythmic events was higher in previously symptomatic patients and in those displaying a spontaneous type I EC
    corecore