1,513 research outputs found

    FAS system deregulation in T-cell lymphoblastic lymphoma

    Get PDF
    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations.S

    Cannabinoid receptor CB2 drives HER2 pro-oncogenic signaling in breast cancer

    Get PDF
    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different models of cancer. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen and Freiburg between 1997 and 2010. CB2 mRNA expression was also analyzed in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the HER2 rat ortholog (neu) and lacks CB2, and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by co-localization, coimmunoprecipitation and proximity ligation assays. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis. We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade, and that an increased CB2 expression activates the HER2 prooncogenic signaling machinery at the level of the tyrosine kinase c-SRC. Finally, HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and suggest that CB2 may be a biomarker with prognostic value in these tumors

    In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells

    Get PDF
    Much effort has been made to try to understand the relationship between chemotherapeutic treatment of cancer and the immune system. Whereas much of that focus has been on the direct effect of chemotherapy drugs on immune cells and the release of antigens and danger signals by malignant cells killed by chemotherapy, the effect of chemotherapy on cells surviving treatment has often been overlooked. In the present study, tumour cell lines: A549 (lung), HCT116 (colon) and MCF-7 (breast), were treated with various concentrations of the chemotherapeutic drugs cyclophosphamide, gemcitabine (GEM) and oxaliplatin (OXP) for 24 hours in vitro. In line with other reports, GEM and OXP upregulated expression of the death receptor CD95 (fas) on live cells even at sub-cytotoxic concentrations. Further investigation revealed that the increase in CD95 in response to GEM sensitised the cells to fas ligand treatment, was associated with increased phosphorylation of stress activated protein kinase/c-Jun N-terminal kinase and that other death receptors and activatory immune receptors were co-ordinately upregulated with CD95 in certain cell lines. The upregulation of death receptors and NKG2D ligands together on cells after chemotherapy suggest that although the cells have survived preliminary treatment with chemotherapy they may now be more susceptible to immune cell-mediated challenge. This re-enforces the idea that chemotherapy-immunotherapy combinations may be useful clinically and has implications for the make-up and scheduling of such treatments

    FAS system deregulation in T-cell lymphoblastic lymphoma

    Get PDF
    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations.S

    Drug-drug interactions in an intensive care unit of a tertiary hospital in southern Chile: Evaluating databases agreement

    Get PDF
    Context: Patients in intensive care units have a high risk of experiencing a pharmacological interaction due to complex pharmacotherapy, severe disease, and comorbidities; increasing the risk of adverse effects of medications. Electronic databases are useful sources to identify drug-drug interactions (DDI), especially when new therapeutic alternatives are added to conventional treatments. Aim: To identify the frequency and severity of potential drug-drug interactions (pDDIs) in ICU patients using three electronic databases. Methods: Clinical pharmacists collected data on medication dosage and route of administration, sex, age, length of stay, comorbidities, and APACHE II score using patient records. Micromedex, Medscape, and Lexicomp databases were used to identify and categorize pDDIs. Intensivists confirmed if a pDDI was clinically present. kappa concordance test was utilized as a measure of agreement among databases. Results: Of the 93 ICU patients studied, pDDIs were identified in 89. A positive incremental relationship was found between number of medications, length of stay, and number of pDDIs. Patients with respiratory pathologies were most predisposed to presenting DDIs. Agreement among databases was mixed. Intensivists confirmed 5% of pDDIs. Conclusions: Discrepancies among databases and in intensivist judgment highlight a significant information gap in the identification of DDIs
    corecore