46 research outputs found

    Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications

    Get PDF
    We analyze the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolor orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modeling of the energy and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channeling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations

    Tutorial: Crystal orientations and EBSD - Or which way is up?

    Get PDF
    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLABÂź and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis.The authors would like to thank a range of funders that underpin this collaborative work: T.B. Britton has a fellowship from the Royal Academy of Engineering. J. Jiang is funded by AVIC BIAM. T.B. Britton and A.J. Wilkinson have project funding from EPSRC through the HexMat programme grant (www.imperial.ac.uk/hexmat EP/K034332/1). DW, A.J. Wilkinson and L. Hanson have project funding from NERC through NE/M000966/1. A.J. Wilkinson and A. Vilalta-Clemente have project funding from EPSRC through EP/J016098/1

    Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin films

    Get PDF
    We describe the development of cross-correlation based high resolution electron backscatter diffraction (HR-EBSD) and electron channelling contrast imaging (ECCI), in the scanning electron microscope (SEM), to quantitatively map the strain variation and lattice rotation and determine the density and identify dislocations in nitride semiconductor thin films. These techniques can provide quantitative, rapid, non-destructive analysis of the structural properties of materials with a spatial resolution of order of tens of nanometers. HR-EBSD has a sensitivity to changes of strain and rotation of the order of 10−4 and 0.01° respectively, while ECCI can be used to image single dislocations up to a dislocation density of order 1010 cm−2. In the present work, we report the application of the cross-correlation based HR-EBSD approach to determine the tilt, twist, elastic strain and the distribution and type of threading dislocations in InAlN/AlN/GaN high electron mobility transistor (HEMT) structures grown on two different substrates, namely SiC and sapphire. We describe our procedure to estimate the distribution of geometrically necessary dislocations (GND) based on Nye-Kroner analysis and compare them with the direct imaging of threading dislocations (TDs) by ECCI. Combining data from HR-EBSD and ECCI observations allowed the densities of pure edge, mixed and pure screw threading dislocations to be fully separated

    Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications

    Get PDF
    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocationsThis work was carried out with the support of EPSRC Grant Nos. EP/J015792/1 and EP/M015181/1 and through support of a Carnegie Trust Research Incentive Grant No. 70483

    Porous GaN and high-k MgO-GaN MOS diode layers grown in a single step on silicon

    Get PDF
    Porous GaN polycrystalline layers with n-type conduction characteristics were catalytically grown from Mg films formed by decomposition of a Mg2N3 precursor typically employed for activating p-type conduction in GaN. After being exposed to oxygen, the Mg film oxidized to a polycrystalline high-Îș oxide between the ohmic alloy interlayer contact and the porous GaN, while maintaining a clean interface. Electrical measurements on devices coupled to composition analysis and electron microscopy of the component layers confirm that a MOS-type porous GaN diode on silicon can be formed by chemical vapor deposition in a single growth regime

    Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    Get PDF
    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3ÎŒm)/AlN(100nm)/Al2O3 high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance

    Microscopic origins of performance losses in highly efficient Cu In, Ga Se2 thin film solar cells

    Get PDF
    Thin film solar cells based on polycrystalline absorbers have reached very high conversion efficiencies of up to 23 25 . In order to elucidate the limiting factors that need to be overcome for even higher efficiency levels, it is essential to investigate microscopic origins of loss mechanisms in these devices. In the present work, a high efficiency 21 without anti reflection coating copper indium gallium diselenide CIGSe solar cell is characterized by means of a correlative microscopy approach and corroborated by means of photoluminescence spectroscopy. The values obtained by the experimental characterization are used as input parameters for two dimensional device simulations, for which a real microstructure was used. It can be shown that electrostatic potential and lifetime fluctuations exhibit no substantial impact on the device performance. In contrast, nonradiative recombination at random grain boundaries can be identified as a significant loss mechanism for CIGSe solar cells, even for devices at a very high performance leve

    Surface evolution of lithium titanate upon electrochemical cycling using a combination of surface specific characterization techniques

    No full text
    Among the electrodes for Li‐ion batteries, Li4Ti5O12 (LTO) stands out as anode owing to its stability and safety, in part ascribed to its low surface reactivity. However, the overlayer formation on the LTO surface upon electrochemical cycling is reported in recent years; a rough surface layer of electrochemically inactive α‐Li2TiO3 on top of the LTO (111) surface is suggested on the grounds of scanning probe techniques and theoretical ab initio calculations which would negatively strike on the battery performance. Hence the investigation of the LTO surface evolution is key to achieve more stable and safer Li‐ion batteries. LTO (111) thin film electrodes are used as model system where a variety of surface specific characterization techniques are applied to unveil the surface behavior of LTO in Li‐ion batteries. In contrast with previous studies, with the help of high‐resolution transmission electron microscopy and synchrotron‐based surface X‐ray diffraction, α‐Li2TiO3 is found to be a surface preparation product. Of special importance is the use of high‐resolution electron backscatter diffraction to report an increase on the LTO surface strain upon electrochemical cycling which can have a critical effect in long cycling performance of LTO that is always considered a zero‐strain material

    Characterization of elastic strain field and geometrically necessary dislocation distribution in stress corrosion cracking of 316 stainless steels by transmission Kikuchi diffraction

    No full text
    Stainless steel alloys such as SUS 316 are widely used in nuclear power plants because of their excellent performance in high-temperature and corrosive environments. In this work, a stress corrosion crack from a sample tested under simulated primary water from a pressurized water reactor has been characterized

    Applications of multivariate statistical methods and simulation libraries to analysis of electron backscatter diffraction and transmission Kikuchi diffraction datasets

    No full text
    Multivariate statistical methods are widely used throughout the sciences, including microscopy, however, their utilisation for analysis of electron backscatter diffraction (EBSD) data has not been adequately explored. The basic aim of most EBSD analysis is to segment the spatial domain to reveal and quantify the microstructure, and links this to knowledge of the crystallography (eg crystal phase, orientation) within each segmented region. Two analysis strategies have been explored; principal component analysis (PCA) and k-means clustering. The intensity at individual (binned) pixels on the detector were used as the variables defining the multidimensional space in which each pattern in the map generates a single discrete point. PCA analysis alone did not work well but rotating factors to the VARIMAX solution did. K-means clustering also successfully segmented the data but was computational more expensive. The characteristic patterns produced by either VARIMAX or k-means clustering enhance weak patterns, remove pattern overlap, and allow subtle effects from polarity to be distinguished. Combining multivariate statistical analysis (MSA) approaches with template matching to simulation libraries can significantly reduce computational demand as the number of patterns to be matched is drastically reduced. Both template matching and MSA approaches may augment existing analysis methods but will not replace them in the majority of applications
    corecore