1,010 research outputs found

    Implications of a new light gauge boson for neutrino physics

    Full text link
    We study the impact of light gauge bosons on neutrino physics. We show that they can explain the NuTeV anomaly and also escape the constraints from neutrino experiments if they are very weakly coupled and have a mass of a few GeV. Lighter gauge bosons with stronger couplings could explain both the NuTeV anomaly and the positive anomalous magnetic moment of the muon. However, in the simple model we consider in this paper (say a purely vectorial extra U(1) current), they appear to be in conflict with the precise measurements of \nu-e elastic scattering cross sections. The surprising agreement that we obtain between our naive model and the NuTeV anomaly for a Z' mass of a few GeV may be a coincidence. However, we think it is interesting enough to deserve attention and perhaps a more careful analysis, especially since a new light gauge boson is a very important ingredient for the Light Dark Matter scenario.Comment: 9 page

    Allen Linear (Interval) Temporal Logic --Translation to LTL and Monitor Synthesis--

    Get PDF
    The relationship between two well established formalisms for temporal reasoning is first investigated, namely between Allen's interval algebra (or Allen's temporal logic, abbreviated \ATL) and linear temporal logic (\LTL). A discrete variant of \ATL is defined, called Allen linear temporal logic (\ALTL), whose models are \omega-sequences of timepoints, like in \LTL. It is shown that any \ALTL formula can be linearly translated into an equivalent \LTL formula, thus enabling the use of \LTL techniques and tools when requirements are expressed in \ALTL. %This translation also implies the NP-completeness of \ATL satisfiability. Then the monitoring problem for \ALTL is discussed, showing that it is NP-complete despite the fact that the similar problem for \LTL is EXPSPACE-complete. An effective monitoring algorithm for \ALTL is given, which has been implemented and experimented with in the context of planning applications

    Nog over ovenkoeken

    Get PDF

    On universality of the coupling of neutrinos to Z

    Full text link
    We employ an effective Lagrangian approach and use LEP data to place severe bounds on universality violations of the couplings of νe\nu_e, νμ\nu_\mu, and ντ\nu_\tau to the ZZ boson. Our results justify the assumption of universality in these couplings that is usually made, as for example in the analysis of solar neutrinos detected at SNO.Comment: 8 pages, no figures. A few comments added. It matches version to be published in PR

    Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics

    Get PDF
    We present the realisation of near-field spectroscopic measurements with fibre-tip-based scanning near-field microscopy. It allows the simultaneous acquisition of near-field images in a broad spectral range (400 nm to 1000 nm), thus recovering local spectroscopic information. This technique is essential in order to understand the resonant interaction of light with nanostructured material as the far-field and nearfield spectral response can differ significantly, e.g., in the case of plasmonic nanostructures. Several example applications of hyperspectral near-field imaging are given for visualisation of Bloch modes in plasmonic crystals and plasmon-assisted transmission through a slit. © 2010 Optical Society of America

    Realtime 3D stress measurement in curing epoxy packaging

    Get PDF

    Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp

    Get PDF
    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. © 2012 Macmillan Publishers Limited. All rights reserved

    Higgs triplet effects in purely leptonic processes

    Get PDF
    We consider the effect of complex Higgs triplets on purely leptonic processes and survey the experimental constraints on the mass and couplings of their single and double charge members. Present day experiments tolerate values of the Yukawa couplings of these scalars at the level of the standard electroweak gauge couplings. We show that the proposed measurement of the ratio R_{LCD}=\sigma (\nu_{\mu}e)/ [\sigma (\bb\nu_{\mu}e) + \sigma (\nu_e e )] would allow to explore a large region of the parameter space inaccessible to the usual ratio R=\sigma (\nu_{\mu}e)/\sigma (\bb\nu_{\mu}e).Comment: 14 pages, LaTeX, Three figures included using uufiles. A postscript version is available at ftp://ftp.ifae.es/preprint/ft/uabft378.p

    Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase

    Get PDF
    Abstract\ud \ud CDKN1C (also known as P57\ud \ud kip2\ud ) is a cyclin-dependent kinase inhibitor that functions as a negative regulator of cell proliferation through G1 phase cell cycle arrest. Recently, our group described gain-of-function mutations in the PCNA-binding site of CDKN1C that result in an undergrowth syndrome called IMAGe Syndrome (Intrauterine Growth Restriction, Metaphyseal dysplasia, Adrenal hypoplasia, and Genital anomalies), with life-threatening consequences. Loss-of-function mutations in CDKN1C have been identified in 5-10% of individuals with Beckwith-Wiedemann syndrome (BWS), an overgrowth disorder with features that are the opposite of IMAGe syndrome. Here, we investigate the effects of IMAGe-associated mutations on protein stability, cell cycle progression and cell proliferation. Mutations in the PCNA-binding site of CDKN1C significantly increase CDKN1C protein stability and prevent cell cycle progression into the S phase. Overexpression of either wild-type or BWS-mutant CDKN1C inhibited cell proliferation. However, the IMAGe-mutant CDKN1C protein decreased cell growth significantly more than both the wild-type or BWS protein. These findings bring new insights into the molecular events underlying IMAGe syndrome.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP process number 2012/09391-0
    • …
    corecore