5 research outputs found
Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation
Background: The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides) as well as in three major non-neural tissues (spleen, liver and kidney) using the Applied Biosystems Rat Genome Survey Microarray. Results: By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side). Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNSsignature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked overrepresentation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion: We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous distribution within the CNS, respectively. The existence of shared specialised neuronal activities in CNS is interesting in a context of potential functional redundancy, and future studies should further explore the overall characteristics of CNS-specific versus region-specific gene profiles in the brain
Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: Marked differences between various antipsychotic drugs
BACKGROUND: The etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP) transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1) in four CNS-relevant human cell lines. RESULTS: There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells. CONCLUSION: Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs
Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat
This study aims to investigate whether orexigenic antipsychotic drugs may induce dyslipidemia and glucose disturbances in female rats through direct perturbation of metabolically active peripheral tissues, independent of prior weight gain. Methods In the current study, we examined whether a single intraperitoneal injection of clozapine or olanzapine induced metabolic disturbances in adult female outbred Sprague–Dawley rats. Serum glucose and lipid parameters were measured during time-course experiments up to 48 h. Real-time quantitative PCR was used to measure specific transcriptional alterations in lipid and carbohydrate metabolism in adipose tissue depots or in the liver. Results Our results demonstrated that acute administration of clozapine or olanzapine induced a rapid, robust elevation of free fatty acids and glucose in serum, followed by hepatic accumulation of lipids evident after 12–24 h. These metabolic disturbances were associated with biphasic patterns of gluconeogenic and lipid-related gene expression in the liver and in white adipose tissue depots. Conclusion Our results support that clozapine and olanzapine are associated with primary effects on carbohydrate and lipid metabolism associated with transcriptional changes in metabolically active peripheral tissues prior to the development of drug-induced weight gain