124 research outputs found

    Persistence of parental-reported asthma at early ages:A longitudinal twin study

    Get PDF
    Background: Currently, we cannot predict whether a pre-school child with asthma-like symptoms will have asthma at school age. Whether genetic information can help in this prediction depends on the role of genetic factors in persistence of pre-school to school-age asthma. We examined to what extent genetic and environmental factors contribute to persistence of asthma-like symptoms at ages 3 to asthma at age 7 using a bivariate genetic model for longitudinal twin data. Methods: We performed a cohort study in monozygotic and dizygotic twins from the Netherlands Twin Register (NTR, n = 21,541 twin pairs). Bivariate genetic models were fitted to longitudinal data on asthma-like symptoms reported by parents at age 3 and 7 years to estimate the contribution of genetic and environmental factors. Results: Bivariate genetic modeling showed a correlation on the liability scale between asthma-like symptoms at age 3 and asthma at age 7 of 0.746 and the contribution of genetics was estimated to be 0.917. The genetic analyses indicated a substantial influence of genetic factors on asthma-like symptoms at ages 3 and 7 (heritability 80% and 90%, respectively); hence, contribution of environmental factors was low. Persistence was explained by a high (rg = 0.807) genetic correlation. Conclusion: Parental-reported asthma-like symptoms at age 3 and asthma at age 7 are highly heritably. The phenotype of asthma-like symptoms at age 3 and 7 was highly correlated and mainly due to heritable factors, indicating high persistence of asthma development over ages 3 and 7

    Early-life antibiotic use and risk of asthma and eczema:results of a discordant twin study

    Get PDF
    RATIONALE: Early-life antibiotic use has been associated with development of atopic diseases, but the aetiology remains unclear. To elucidate aetiology, we used a discordant twin design to control for genetic and environmental confounding. METHODS: We conducted a retrospective cohort study in twins (3-10 years) from the Netherlands Twin Register (NTR, n=34 352) and a replication study at age 9 in the Childhood and Adolescent Twin Study in Sweden (CATSS, n=7906). Antibiotic use was recorded at 0-2 years. Doctor diagnosed asthma and eczema were reported by parents when children were 3-12 years in both cohorts. Individuals were included in unmatched analyses and in co-twin control analyses with disease discordant twin pairs. RESULTS: Early-life antibiotic use was associated with increased risk of asthma (NTR OR 1.34 95%CI 1.28-1.41; CATSS 1.45 95%CI 1.34-1.56) and eczema (NTR OR 1.08 95%CI 1.03-1.13; CATSS 1.07 95%CI 1.01-1.14) in unmatched analyses. Co-twin analyses in mono- and dizygotic twin pairs showed similar results for asthma (NTR 1.54 95%CI 1.20-1.98 and CATSS 2.00 95%CI 1.28-3.13), but opposing results for eczema in NTR (0.99 95%CI 0.80-1.25) and CATSS (1.67 95%CI 1.12-2.49). The risk of asthma increased for antibiotics prescribed for respiratory infections (CATSS 1.45 95%CI 1.34-1.56), but not for antibiotics commonly used for urinary tract/skin infections (CATSS 1.02 95%CI 0.88-1.17). CONCLUSION: Children exposed to early-life antibiotic use, particularly prescribed for respiratory infections, may be at higher risk of asthma. This risk can still be observed, when correcting for genetic and environmental factors. Our results could not elucidate whether the relationship between early-life antibiotic use and eczema is confounded by familial and genetic factors

    Early-life antibiotic use and risk of attention-deficit hyperactivity disorder and autism spectrum disorder:results of a discordant twin study

    Get PDF
    Background Development of the gut-brain axis in early life may be disturbed by antibiotic use. It has been hypothesized that this disturbance may contribute to development of neurodevelopmental disorders, including autism spectrum disorder and attention-deficit hyperactivity disorder. We aimed to assess the association between antibiotic use in early life and the risk of developing attention-deficit hyperactivity disorder or autism spectrum disorder, while controlling for shared genetic and environmental factors in a discordant twin design. Methods We conducted a cohort study in twins (7–12 years; 25 781 twins) from the Netherlands Twin Register (NTR) and a replication study in the Childhood and Adolescent Twin Study in Sweden (CATSS; 7946 9-year-old twins). Antibiotic use was recorded before age 2 years. Attention-deficit hyperactivity disorder and autism spectrum disorder were parent-reported in the Netherlands Twin Register and register-based in the Childhood and Adolescent Twin Study in Sweden. Results Early-life antibiotic use was associated with increased risk of attention-deficit hyperactivity disorder development [pooled odds ratio (OR) 1.10, 95% confidence interval (CI) 1.02-1.17] and autism spectrum disorder (pooled OR 1.15, 95% CI 1.06-1.25) in a case-control design. When restricting to monozygotic twin pairs discordant for the outcome, associations disappeared for both disorders in both cohorts (attention-deficit hyperactivity disorder OR 0.90, 95% CI 0.48-1.69 and OR 0.80, 95% CI 0.37-1.76, and autism spectrum disorder OR 0.66, 95% CI 0.38-1.16 and OR 0.29, 95% CI 0.02-4.50, respectively). Conclusions Our findings suggest that the association between early-life antibiotic use and risk of attention-deficit hyperactivity and autism spectrum disorder may be confounded by shared familial environment and genetics

    Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma

    Get PDF
    Background: Uncontrolled asthma can lead to severe exacerbations and reduced quality of life. Research has shown that the microbiome may be linked with asthma characteristics; however, its association with asthma control has not been explored. We aimed to investigate whether the gastrointestinal microbiome can be used to discriminate between uncontrolled and controlled asthma in children. Methods: 143 and 103 feces samples were obtained from 143 children with moderate-to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were classified as controlled or uncontrolled asthmatics, and their microbiome at species level was compared using global (alpha/beta) diversity, conventional differential abundance analysis (DAA, analysis of compositions of microbiomes with bias correction), and machine learning [Recursive Ensemble Feature Selection (REFS)]. Results: Global diversity and DAA did not find significant differences between controlled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed enrichment in taxa previously associated with inflammatory diseases for both sampling compartments, and with COPD for the saliva samples. Conclusion: Controlled and uncontrolled children with asthma can be differentiated based on their gastrointestinal microbiome using machine learning, specifically REFS. Our results show an association between asthma control and the gastrointestinal microbiome. This suggests that the gastrointestinal microbiome may be a potential biomarker for treatment responsiveness and thereby help to improve asthma control in children

    Pharmacogenomic associations of adverse drug reactions in asthma:systematic review and research prioritisation

    Get PDF
    We would like to thank the NIHR Collaboration for Leadership in Applied Health Research and Care North West Coast (CLAHRC) for funding Amanda McKenna’s internship, and Charlotte Kings MPhil, and the members of the PiCA consortia for their help in completing the survey. U. Potočnik, K. Repnik and V. Berce were supported by SysPharmPedia grant, co-financed by Ministry of Education, Science and Sport of the Republic of Slovenia Author information These authors contributed equally: Charlotte King, Amanda McKenna These authors jointly supervised this work: Ian Sinha, Daniel B. HawcuttPeer reviewedPublisher PD

    Early life antibiotic use and the risk of asthma and asthma exacerbations in children

    Get PDF
    Background: The use of antibiotic therapy early in life might influence the risk of developing asthma. Studies assessing the influence of early life antibiotic use on the risk of asthma exacerbations are limited, and the results are inconsistent. Therefore, the aim of this study was to assess the association between use of antibiotic during the first three years of life and the risk of developing childhood asthma and the occurrence of asthma exacerbations. Methods: Data from four large childhood cohorts were used; two population-based cohorts to study the risk of developing asthma: Generation R (n=7,393, the Netherlands) and SEATON (n=891, Scotland, UK), and two asthma cohorts to assess the risk of asthma exacerbations: PACMAN (n=668, the Netherlands) and BREATHE (n=806, Scotland, UK). Odds ratios (ORs) were derived from logistic regression analysis within each database followed by pooling the results using a fixed- or random-effect model. Results: Antibiotic use in early life was associated with an increased risk of asthma in a meta-analysis of the Generation R and SEATON data (OR: 2.18, 95% CI: 1.04-4.60; I2: 76.3%). There was no association between antibiotic use in early life and risk of asthma exacerbations later in life in a meta-analysis of the PACMAN and BREATHE data (OR: 0.93, 95% CI: 0.65-1.32; I2: 0.0%). Conclusion: Children treated with antibiotic in the first three years of life are more likely to develop asthma, but there is no evidence that the exposure to antibiotic is associated with increase d risk of asthma exacerbations

    Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma

    Get PDF
    Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes

    17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

    Get PDF
    _To the Editor,_ Approximately 25% of the asthmatic children suffer from uncontrolled asthma despite regular use of inhaled corticosteroids (ICS). Variation within the 17q21 locus is the strongest genetic determinant for childhood‐onset asthma. Recently, the influence of this locus on treatment outcomes has been shown in several studies. The Pharmacogenomics in Childhood Asthma (PiCA) consortium is a multiethnic consortium that brings together data from ≄14 000 asthmatic children/young adults from 12 different countries to study the pharmacogenomics of uncontrolled asthma despite treatment. In 14 PiCA populations (with over 4000 asthmatic patients), we studied the association between variation in the 17q21 locus, and asthma exacerbations despite ICS use. We specifically focused on rs7216389, a single nucleotide polymorphism (SNP) in the 17q21 locus strongly associated with childhood asthma and initially identified by Moffatt et al. [...
    • 

    corecore