32 research outputs found

    Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens

    Get PDF
    Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines

    Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens

    Get PDF
    Background: The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings: In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance: These findings demonstrate the possibility to enhance the immunogenicity of the highl

    Preparation of amorphous forms to increase the solubility of poorly soluble drugs using spray drying

    No full text
    Spray drying is widely used in enhancing the aqueous solubility of poorly soluble compounds. In this study, the mechanism of solubility enhancement was characterized using three model drugs-naproxen, ketoprofen and furosemide. Physical mixtures of the model drug with polyvinylpyrrolidine and spray dried composites were subjected to Fourier Transform Infrared Sprectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (XRPD). The data showed that the crystalline model drugs were converted to amorphous form upon spray drying, whereas the physical mixtures did not change their crystallinity. The effect of the amorphous forms produced by Spray drying on apparent solubility and intrinsic dissolution rate was determined. All the spray dried composites exhibited higher apparent solubility and intrinsic dissolution rate when compared to the pure drugs and their physical mixtures. The stability of the spray dried composites upon storage was also determined. The amorphous nature of the compounds in the spray dried composites were retained during 3 months storage as shown by FTIR, DSC and XRPD characterization and their apparent solubility and intrinsic dissolution rates also did not change

    Power-law fluid flow across an array of infinite circular cylinders: a numerical study

    No full text
    The steady flow of power-law liquids normal to arrays of long circular cylinders has been studied theoretically. The governing equations (continuity and momentum) have been solved numerically using the finite difference method. The hydrodynamic interactions between cylinders have been accounted for by employing the so-called zero vorticity cell model which assumes each cylinder in the array to be surrounded by a hypothetical concentric envelope of fluid. Extensive results on the detailed kinematics of the flow in terms of the variation of the surface vorticity and the power-law viscosity on the cylinder surface, streamline and iso-vorticity plots as well as on gross fluid dynamic parameters in terms of the friction and pressure drag coefficients under wide ranges of conditions (0.01 ≀ Re ≀ 10; 1 β‰₯ n β‰₯ 0.5 and 0.95 β‰₯ Ξ΅ β‰₯ 0.4) have been presented and discussed herein. The paper is concluded by performing comparisons between the present predictions and the scant analytical and experimental results available in the literature

    Steady flow of Newtonian and dilatant fluids over an array of long circular cylinders

    No full text
    Field equations for the steady flow of power-law dilatant fluids normal to an array of long circular cylinders have been solved numerically using the finite difference method. The cylinder-cylinder interactions have been simulated using the two widely used concentric cylindrical cell models, namely, the Free surface and Zero vorticity cell models. Extensive theoretical results on the individual components of flow resistance arising from pressure and shear forces are presented for a range of physical and kinematic conditions. Furthermore, information on the variation of vorticity and power-law viscosity is also presented to provide some physical insights into the nature of the flow field. The results presented herein encompass the following ranges of physical and kinematic conditions: Ξ΅ = 0.5 and 0.9; Re = 0.1, 1 and 10 and 1 ≀ n ≀ 1.8. An excellent match between theory and experiments for Newtonian fluids demonstrates the utility of this simple approach to the modeling of momentum transfer in fibrous beds and tubular heat exchangers. However, no suitable experimental results are available for dilatant fluids in these systems

    Blockade of Interferon Induction and Action by the E3L Double-Stranded RNA Binding Proteins of Vaccinia Virus

    No full text
    The vaccinia virus E3L gene encodes two double-stranded RNA binding proteins that promote viral growth and pathogenesis through suppression of innate immunity. To explore how E3L enables vaccinia virus to evade the interferon system, cells and mice deficient in the principal interferon-regulated antiviral enzymes, PKR and RNase L, were infected with wild-type vaccinia virus and strains of vaccinia virus from which E3L had been deleted (E3L-deleted strains). While wild-type virus was unaffected by RNase L and PKR, virus lacking E3L replicated only in the deficient cells. Nevertheless, E3L-deleted virus failed to replicate to high titers or to cause significant morbidity or mortality in triply deficient mice lacking RNase L, PKR, and Mx1. To investigate the underlying cause, we determined the effect of E3L on interferon regulatory factor 3 (IRF3), a transcription factor required for viral induction of subtypes of type I interferons. Results showed that IRF3 activation and interferon-Ξ² induction occurred after infections with E3L-deleted virus but not with wild-type virus. These findings demonstrate that E3L plays an essential role in the pathogenesis of vaccinia virus by blocking the interferon system at multiple levels. Furthermore, our results indicate the existence of an interferon-mediated antipoxvirus pathway that operates independently of PKR, Mx1, or the 2-5A/RNase L system

    Subversion of Cell Signaling Pathways by Hepatitis C Virus Nonstructural 5A Protein via Interaction with Grb2 and P85 Phosphatidylinositol 3-Kinase

    No full text
    Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis
    corecore