1,885 research outputs found
Pre-Processing and Post-Processing in Group-Cluster Mergers
Galaxies in clusters are more likely to be of early type and to have lower
star formation rates than galaxies in the field. Recent observations and
simulations suggest that cluster galaxies may be `pre-processed' by group or
filament environments and that galaxies that fall into a cluster as part of a
larger group can stay coherent within the cluster for up to one orbital period
(`post-processing'). We investigate these ideas by means of a cosmological
-body simulation and idealized -body plus hydrodynamics simulations of a
group-cluster merger. We find that group environments can contribute
significantly to galaxy pre-processing by means of enhanced galaxy-galaxy
merger rates, removal of galaxies' hot halo gas by ram pressure stripping, and
tidal truncation of their galaxies. Tidal distortion of the group during infall
does not contribute to pre-processing. Post-processing is also shown to be
effective: galaxy-galaxy collisions are enhanced during a group's pericentric
passage within a cluster, the merger shock enhances the ram pressure on group
and cluster galaxies, and an increase in local density during the merger leads
to greater galactic tidal truncation.Comment: Accepted for publication in MNRAS. 25 pages, 21 figure
Arachidonic Acid as a Possible Negative Feedback Inhibitor of Nicotinic Acetylcholine Receptors on Neurons
Neuronal acetylcholine receptors, being highly permeable to calcium, are likely to regulate calcium-dependent events in neurons. Arachidonic acid is a membrane-permeant second messenger that can be released from membrane phospholipids by phospholipases in a calcium-dependent manner. We show here that activation of neuronal acetylcholine receptors triggers release of 3H-arachidonic acid in a calcium-dependent manner from neurons preloaded with the fatty acid. Moreover, low concentrations of arachidonic acid reversibly inhibit the receptors and act most efficiently on receptors likely to have the highest permeability to calcium, namely receptors containing α7 subunits. Low concentrations of arachidonic acid also reversibly inhibit α7- containing receptors expressed in Xenopus oocytes following injection of α7 cRNA. The oocyte results indicate following injection of α7 cRNA. The oocyte results indicate that the inhibition is a feature of the receptors rather than a consequence of neuron-specific machinery. The inhibition is not mediated by specific metabolites of arachidonic acid because the effects can be mimicked by other fatty acids; their effectiveness correlates with their content of double bonds. In contrast to arachidonic effects on calcium currents, inhibition of neuronal nicotinic receptors by the fatty acid cannot be prevented by blocking production of free radicals or by inhibiting protein kinase C. An alternative mechanism is that arachidonic acid binds directly to the receptors or perturbs the local environment in such a manner as to constrain receptor function
Quantifying dynamical spillover in co-evolving multiplex networks
Multiplex networks (a system of multiple networks that have different types
of links but share a common set of nodes) arise naturally in a wide spectrum of
fields. Theoretical studies show that in such multiplex networks, correlated
edge dynamics between the layers can have a profound effect on dynamical
processes. However, how to extract the correlations from real-world systems is
an outstanding challenge. Here we provide a null model based on Markov chains
to quantify correlations in edge dynamics found in longitudinal data of
multiplex networks. We use this approach on two different data sets: the
network of trade and alliances between nation states, and the email and
co-commit networks between developers of open source software. We establish the
existence of "dynamical spillover" showing the correlated formation (or
deletion) of edges of different types as the system evolves. The details of the
dynamics over time provide insight into potential causal pathways
Position determination of a lander and rover at Mars with Earth-based differential tracking
The presence of two or more landed or orbiting spacecraft at a planet provides the opportunity to perform extremely accurate Earth-based navigation by simultaneously acquiring Doppler data and either Same-Beam Interferometry (SBI) or ranging data. Covariance analyses were performed to investigate the accuracy with which lander and rover positions on the surface of Mars can be determined. Simultaneous acquisition of Doppler and ranging data from a lander and rover over two or more days enables determination of all components of their relative position to under 20 m. Acquiring one hour of Doppler and SBI enables three dimensional lander-rover relative position determination to better than 5 m. Twelve hours of Doppler and either SBI or ranging from a lander and a low circular or half synchronous circular Mars orbiter makes possible lander absolute position determination to tens of meters
Entanglement transitions in random definite particle states
Entanglement within qubits are studied for the subspace of definite particle
states or definite number of up spins. A transition from an algebraic decay of
entanglement within two qubits with the total number of qubits, to an
exponential one when the number of particles is increased from two to three is
studied in detail. In particular the probability that the concurrence is
non-zero is calculated using statistical methods and shown to agree with
numerical simulations. Further entanglement within a block of qubits is
studied using the log-negativity measure which indicates that a transition from
algebraic to exponential decay occurs when the number of particles exceeds .
Several algebraic exponents for the decay of the log-negativity are
analytically calculated. The transition is shown to be possibly connected with
the changes in the density of states of the reduced density matrix, which has a
divergence at the zero eigenvalue when the entanglement decays algebraically.Comment: Substantially added content (now 24 pages, 5 figures) with a
discussion of the possible mechanism for the transition. One additional
author in this version that is accepted for publication in Phys. Rev.
Adsorption and binding dynamics of graphene-supported phospholipid membranes using the QCM-D technique
We report on the adsorption dynamics of phospholipid membranes on
graphene-coated substrates using the quartz crystal microbalance with
dissipation monitoring (QCM-D) technique. We compare the lipid vescle
interaction and membranne formation on gold and silicon dioxide QCM crystal
surfaces with their graphene oxide (GO) and reduced (r)GO coated counterparts,
and report on the different lipid structures obtained. We establish graphene
derivative coatings as support surfaces with tuneable hydrophobicity for the
formation of controllable lipid structures. One structure of interest formed
are lipid monolayer membrannes which were formed on rGO, which are otherwise
challenging to produce. We also demonstrate and monitor biotin-avidin binding
on such a membranne, which will then serve as a platform for a wide range of
biosensing applications. The QCM-D technique could be extended to both
fundamental studies and applications of other covalent and non-covalent
interactions in 2-dimensional materials
Ultra-thin graphene–polymer heterostructure membranes
The fabrication of arrays of ultra-thin conductive membranes remains a major challenge in realising large-scale micro/nano-electromechanical systems (MEMS/NEMS), since processing-stress and stiction issues limit the precision and yield in assembling suspended structures. We present the fabrication and mechanical characterisation of a suspended graphene–polymer heterostructure membrane that aims to tackle the prevailing challenge of constructing high yield membranes with minimal compromise to the mechanical properties of graphene. The fabrication method enables suspended membrane structures that can be multiplexed over wafer-scales with 100% yield. We apply a micro-blister inflation technique to measure the in-plane elastic modulus of pure graphene and of heterostructure membranes with a thickness of 18 nm to 235 nm, which ranges from the 2-dimensional (2d) modulus of bare graphene at 173 ± 55 N m to the bulk elastic modulus of the polymer (Parylene-C) as 3.6 ± 0.5 GPa as a function of film thickness. Different ratios of graphene to polymer thickness yield different deflection mechanisms and adhesion and delamination effects which are consistent with the transition from a membrane to a plate model. This system reveals the ability to precisely tune the mechanical properties of ultra-thin conductive membranes according to their applications
Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)
We investigate the nature and origin of the metal-insulator transition in
Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed
core, valence, and conduction band studies with x-ray and ultraviolet
photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy,
it is shown that a hard gap opens up for Ti content greater than equal to 0.2,
while compositions with x<0.2 exhibit finite intensity at the Fermi energy.
This establishes that the metal-insulator transition in this homovalent
substituted series of compounds is driven by Coulomb interaction leading to the
formation of a Mott gap, in contrast to transitions driven by disorder effects
or band flling.Comment: Accepted for publication in Phys. Rev.
Stock assessment of the Indian oil-sardinella (Sardinella longiceps) off the West Coast of India
The Indian oil-sardinella (Sardinella longiceps Val .) has traditionally played a critical role in the marine fishery economics of India, and in particular in the State of Kerala. It's production on the west coast of India exhibits large fluctuations over the years, though it continues to
be commercially the most important and abundant pelagic resource (Table 1). These fluctuations have attracted the attention of many research workers. As early as 1910 Hornell attributed them to changes in diatom production or food availability to the fry and the prevalence of favourable hydrological conditions. Kesteven (1967) was of the view that the fluctuations are related to shifts in the migratory path of the fish, causing variations in the accessibility of the stocks to fishing due to the limited range of the fishing operations
- …