107 research outputs found

    The Impact of Product Contamination in a Multi-Stage Food Supply Chain

    Get PDF
    Food product contamination leading to a food borne illness is real and has potentially devastating impact on supply chain operations and cost. However, it is not well understood from the quantitative perspective. This research seeks to fill this gap by providing a generic model of a multi-stage food supply chain consisting of a supplier/grower, processing center and retailer(s) and analyzing the impact of food product contamination in this model. The supplier corresponds to the farm/grower of the raw material such as fruits and vegetables, the processing center processes the raw material into a final food product and the retailer corresponds to the supermarkets and grocery stores selling the food product to a customer. A situation where a contamination occurs at the supplier or processing center potentially resulting in a food borne illness to the customer is considered. The contamination is discovered through periodic sampling tests conducted by the grower, processing center or through the outbreak of a food borne illness. The supply chain is modeled utilizing a G/G/1 queuing system at the processing center and an order- up to policy at the retailer(s). This research develops and compares multi-stage supply chain models with varying number of retailers. The negative dependence of contamination on the origin and mode of detection of the contamination is quantified. The differences in individual food product attributes which can impact the cost of contamination are analyzed. The impact of supply chain structure and properties and detection policies on the severity of potential contamination cases is studied. The most cost effective sampling strategies which companies can adopt in the event of product contamination are derived. The payoff from the implementation of a quality control process which can eradicate contamination is evaluated. A numerical study of the impact of a real-world contamination event on a tomato and lettuce supply chain is also conducted. Finally, a traceability system capable of tracking and tracing back products in the event of a food product recall is incorporated in the supply chain model. The value of traceability for different supply chain scenarios is assessed through the implementation of an ARENA based simulation model

    Correlation of Neck Circumference with Body Fat Percentage by Bioelectrical Impedance Analysis

    Get PDF
    Introduction: Obesity is a significant public health concern associated with various health risks. Accurate and accessible methods for assessing body fat percentage are essential for obesity evaluation. This study aimed to investigate the relationship between neck circumference and body fat percentage, considering bioelectrical impedance analysis as the reference method. Methods: A cross-sectional study was conducted among 63 male medical and paramedical students aged 18 to 25 years. Neck circumference, body fat percentage, weight, height, and body mass index (BMI) were measured using standardized techniques. Statistical analysis included descriptive statistics, correlation analysis, and significance testing. Results: The mean neck circumference was 37.4 cm (SD = ±1.6), and the mean body fat percentage was 22.8% (SD = ±4.5). A strong positive correlation was observed between neck circumference and body fat percentage (r = 0.75, p ≤ 0.001). The results indicated that neck circumference can serve as a practical and accessible measurement for estimating body fat percentage. Conclusion: Neck circumference strongly correlated with body fat percentage, suggesting its potential as an obesity assessment tool. Further research involving larger and more diverse populations is needed to validate these findings and explore the clinical implications of using neck circumference in obesity evaluation.Introducción: La obesidad es un importante problema de salud pública asociado a diversos riesgos para la salud. Los métodos precisos y accesibles para evaluar el porcentaje de grasa corporal son esenciales para la evaluación de la obesidad. Este estudio tuvo como objetivo investigar la relación entre la circunferencia del cuello y el porcentaje de grasa corporal, considerando el análisis de impedancia bioeléctrica como método de referencia. Métodos: Se realizó un estudio transversal en 63 estudiantes de medicina y paramédica del sexo masculino con edades entre 18 y 25 años. La circunferencia del cuello, el porcentaje de grasa corporal, el peso, la altura y el índice de masa corporal (IMC) se midieron utilizando técnicas estandarizadas. El análisis estadístico incluyó estadísticas descriptivas, análisis de correlación y pruebas de significación. Resultados: La circunferencia media del cuello fue de 37,4 cm (DE = ±1,6) y el porcentaje medio de grasa corporal fue del 22,8% (DE = ±4,5). Se observó una fuerte correlación positiva entre la circunferencia del cuello y el porcentaje de grasa corporal (r = 0,75, p ≤ 0,001). Los resultados indicaron que la circunferencia del cuello puede servir como una medida práctica y accesible para estimar el porcentaje de grasa corporal. Conclusión: la circunferencia del cuello se correlacionó fuertemente con el porcentaje de grasa corporal, lo que sugiere su potencial como herramienta de evaluación de la obesidad. Se necesita más investigación que involucre a poblaciones más grandes y diversas para validar estos hallazgos y explorar las implicaciones clínicas del uso de la circunferencia del cuello en la evaluación de la obesidad

    Effect of Haemoglobin and Iron Status of the Antenatal Mothers on their Newborns at Birth: A Cross-sectional Study

    Get PDF
    Introduction: Iron deficiency (ID) anaemia in pregnant mothers can affect the iron reserves of their newborns and lead to anaemia later. The haematological indices and iron status of pregnant women and its correlation with their neonates is still unclear. Aim: To assess the correlation between maternal and cord blood Hb and iron status. Materials and Methods: The present cross-sectional study included 134 antenatal mothers, at term gestation without any significant antenatal complications. Complete haemogram, serum iron, ferritin, and iron binding capacity were assessed for these mothers before delivery and also from the cord blood samples of their newborns at birth. Statistical difference and correlation were observed using Chi-square test and Pearson’s correlation coefficient. Results: Maternal anaemia Hb <11 gm/dL) was observed in 62 (46.3%). The mean Hb and ferritin of the mothers were 11.06±1.02 gm/dL and 113.3±7.1 μg/L, respectively. The mean Hb and ferritin levels of the cord blood samples were 12.24±0.17 gm/dL and 214.3±20.1 μg/L, respectively. In univariate analysis, maternal Hb showed a significant correlation with cord blood Hb with Odds Ratio (OR) 0.508 and 95% Confidence Interval (CI): 0.428-0.603. The Pearson’s correlation showed a moderate correlation between mother and cord blood Packed Cell Volume (PCV) (r=0.344, p<0.001) and weak correlation between other maternal and cord blood iron indices and serum ferritin (r=0.191, p=0.027 and r=0.203, p=0.019). Conclusion: There is a significant correlation between maternal and cord blood Hb in term neonates. The study indicates that the haematological indices of pregnant women determine the neonatal Hb in term babies

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Product Recalls in the Meat and Poultry Industry: Key Drivers of Supply Chain Efficiency and Effectiveness

    No full text
    There has been a significant increase in the number, size, and severity of food product recalls in the United States in the past decade. Additionally, the pressure to reduce costs has caused many food supply chains to off-shore production activities, making the logistics of recall events more challenging and costly for these supply chains. Thus, there is a strong need for research that can help identify the determinants and key drivers of supply chain efficiency and effectiveness with respect to food recall events. We focus our investigation on meat and poultry supply chains in the United States. Through an empirical analysis of over 500 recall events recorded in the government tracking database during the 2005-2013 period, we identify and test key factors that impact the product recall process in contemporary food supply chains. We conduct a statistical regression analysis to examine the impact of recall strategy, hazard type and the supply chain entity detecting the hazard on the time to recall and the amount of product recovered at closure. Future work also aims to investigate the impact of supply chain structure, reverse logistics and the potential impact of traceability (e.g., RFID) and condition monitoring (e.g., temperature sensors) on recall outcomes
    corecore