9 research outputs found

    An Amino-Chain Modified β-cyclodextrin: A Supramolecular Ligand for Pd(OAc)2 Acceleration in Suzuki–Miyaura Coupling Reactions in Water

    No full text
    A well-designed and synthesized water-soluble class of β-cyclodextrin supported palladium complex PdLn@Et-β-CD could efficiently validate high catalytic activity and act as a supramolecular platform for phosphine-free Suzuki–Miyaura cross‐coupling reactions between arylboronic acid/ arylboronic ester and aryl halides in water under mild conditions. The presented novel PdLn@Pr-β-CD complex catalyst was characterized by NMR, XRD, FT-IR, and DSC analysis. Furthermore, the role of the PdLn@Et-β-CD fragment in the reaction mechanism studied by molecular complexation was proposed based on FT-IR, 2D NMR (ROESY) spectroscopy, FE-SEM, and DSC spectroscopic analysis. The important benefits of this technique comprise simple phosphine-free preparation of the palladium catalyst, a wide range of functional-group tolerance, and easy recyclability; this method, furthermore, eschews hazardous reagents or solvents

    Utilization of Water-Soluble Aminoethylamino–β–Cyclodextrin in the Pfitzinger Reaction—Catalyzed to the Synthesis of Diversely Functionalized Quinaldine

    No full text
    In this study we describe the use of an aminoethylamino-β-cyclodextrin (AEA–β–CD) as a supramolecular homogeneous catalyst for the synthesis of a series of diversely substituted quinaldine derivatives which are medicinally important, via Pfitzinger reaction. This supramolecular catalyst exhibited remarkable catalytic activity with high substrate scope to achieve the synthetic targets in good to excellent yield, 69–92%. The structural and morphological properties of the synthesized AEA–β–CD were determined through MALDI–TOF mass spectrometry, NMR, FT-IR, and SEM analysis. Possible reaction mechanisms were determined through molecular host–guest complexation and proposed based on 2D NMR (ROESY) spectroscopy, FT-IR, FE-SEM, and DSC

    Solubility Enhancement of Atrazine by Complexation with Cyclosophoraose Isolated from Rhizobium leguminosarum biovar trifolii TA-1

    No full text
    Rhizobium leguminosarum biovar trifolii TA-1, a kind of soil bacteria, produces cyclosophoraoses (Cys). Cyclosophoraoses contain various ring sizes with degrees of polymerization ranging from 17 to 23. Atrazine is a hardly-soluble herbicide that contaminates soil and drinking water, and remains in soil for a long time. To remove this insoluble contaminant from aqueous solutions, we have enhanced the solubility of atrazine by complexation with Cys. The complex formation of Cys and atrazine was confirmed using 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), field emission scanning electron microscopy (FE-SEM), rotating frame nuclear overhauser spectroscopy (ROESY), and molecular modeling studies. The aqueous solubility of atrazine was enhanced 3.69-fold according to the added concentrations (20 mM) of Cys, compared to the 1.78-fold enhancements by β-cyclodextrin (β-CD). Cyclosophoraoses as an excellent solubility enhancer with long glucose chains that can effectively capture insoluble materials showed a potential application of microbial polysaccharides in the removal of hazardous hardly-soluble materials from aqueous solutions in the fields of biological and environmental industry

    Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity

    No full text
    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release
    corecore