20 research outputs found

    A versatile functional interaction between electrically silent K V subunits and K V 7 potassium channels

    Get PDF
    Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought—possibly serving nature to shape potassium conductance to the needs of individual cell types

    Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness

    Full text link
    Background: The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. Methods: A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. Results: We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. Conclusions: Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption. Keywords: KCNJ10; KCNJ15; KCNJ16; acid-base homeostasis; deafness; distal tubule; hypokalemia; potassium channels; proximal tubule; tubulopathy

    Structural determinants of Kvβ1.3-induced channel inactivation: a hairpin modulated by PIP2

    Get PDF
    Inactivation of voltage-gated Kv1 channels can be altered by Kvβ subunits, which block the ion-conducting pore to induce a rapid (‘N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvβ1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvβ1.3 was antagonized by intracellular PIP2. Mutations of R5 or T6 in Kvβ1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP2. R5C or T6C Kvβ1.3 also exhibited diminished binding of PIP2 compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvβ1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvβ1.3, in contrast to Kvβ1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvβ1.3 between phosphoinositides (PIPs) and the inner pore region of the channel

    Optimized tuning of auditory inner hair cells to encode complex sound through synergistic activity of six independent K+ current entities

    No full text
    Auditory inner hair cells (IHCs) convert sound vibrations into receptor potentials that drive synaptic transmission. For the precise encoding of sound qualities, receptor potentials are shaped by K+ conductances tuning the properties of the IHC membrane. Using patch-clamp and computational modeling, we unravel this membrane specialization showing that IHCs express an exclusive repertoire of six voltage-dependent K+ conductances mediated by K(v)1.8, K(v)7.4, K(v)11.1, K(v)12.1, and BKCa channels. All channels are active at rest but are triggered differentially during sound stimulation. This enables non-saturating tuning over a far larger potential range than in IHCs expressing fewer current entities. Each conductance contributes to optimizing responses, but the combined activity of all channels synergistically improves phase locking and the dynamic range of intensities that IHCs can encode. Conversely, hypothetical simpler IHCs appear limited to encode only certain aspects (frequency or intensity). The exclusive channel repertoire of IHCs thus constitutes an evolutionary adaptation to encode complex sound through multifaceted receptor potentials

    Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3

    No full text
    The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3ζ cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3ζ (but not TASK-1ΔC5 and 14-3-3ζ) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be co-immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane

    Tamm-Horsfall Glycoprotein Interacts with Renal Outer Medullary Potassium Channel ROMK2 and Regulates Its Function*

    No full text
    Tamm-Horsfall glycoprotein (THGP) or Uromodulin is a membrane protein exclusively expressed along the thick ascending limb (TAL) and early distal convoluted tubule (DCT) of the nephron. Mutations in the THGP encoding gene result in Familial Juvenile Hyperuricemic Nephropathy (FJHN), Medullary Cystic Kidney Disease type 2 (MCKD-2), and Glomerulocystic Kidney Disease (GCKD). The physicochemical and biological properties of THGP have been studied extensively, but its physiological function in the TAL remains obscure. We performed yeast two-hybrid screening employing a human kidney cDNA library and identified THGP as a potential interaction partner of the renal outer medullary potassium channel (ROMK2), a key player in the process of salt reabsorption along the TAL. Functional analysis by electrophysiological techniques in Xenopus oocytes showed a strong increase in ROMK current amplitudes when co-expressed with THGP. The effect of THGP was specific for ROMK2 and did not influence current amplitudes upon co-expression with Kir2.x, inward rectifier potassium channels related to ROMK. Single channel conductance and open probability of ROMK2 were not altered by co-expression of THGP, which instead increased surface expression of ROMK2 as determined by patch clamp analysis and luminometric surface quantification, respectively. Despite preserved interaction with ROMK2, disease-causing THGP mutants failed to increase its current amplitude and surface expression. THGP−/− mice exhibited increased ROMK accumulation in intracellular vesicular compartments when compared with WT animals. Therefore, THGP modulation of ROMK function confers a new role of THGP on renal ion transport and may contribute to salt wasting observed in FJHN/MCKD-2/GCKD patients

    Defects in KCNJ16 cause a novel tubulopathy with hypokalemia, salt wasting, disturbed acid-base homeostasis, and sensorineural deafness

    No full text
    Background The transepithelial transport of electrolytes, solutes, and water in the kidney is a wellorchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not onlymediate potassiumrecycling for proper Na+, K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. Methods A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineuraldeafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. ResultsWeidentifiedmutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. Conclusions Biallelic variants inKCNJ16were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling aswell as distal tubular salt reabsorption
    corecore