23 research outputs found

    Using geospatial technology to strengthen data systems in developing countries: the case of agricultural statistics in India

    Get PDF
    Despite significant progress in the development of quantitative geography techniques and methods and a general recognition of the need to improve the quality of geographic data, few studies have exploited the potential of geospatial tools to augment the quality of available data methods in developing countries. This paper uses data from an extensive deployment of geospatial technology in India to compare crop areas estimated using geospatial technology to crop areas estimated by conventional methods and assess the differences between the methods. The results presented here show that crop area estimates based on geospatial technology generally exceed the estimates obtained using conventional methods. This suggests that conventional methods are unable to respond quickly to changes in cropping patterns and therefore do not accurately record the area under high-value cash crops. This finding has wider implications for commercializing agriculture and the delivery of farm credit and insurance services in developing countries. Significant data errors found in the conventional methods could affect critical policy interventions such as planning for food security. Some research and policy implications are discussed

    Short-term prediction of parking availability in an open parking lot

    No full text
    The parking of cars is a globally recognized problem, especially at locations where there is a high demand for empty parking spaces. Drivers tend to cruise additional distances while searching for empty parking spaces during peak hours leading to problems, such as pollution, congestion, and driver frustration. Providing short-term predictions of parking availability would facilitate the driver in making informed decisions and planning their arrival to be able to choose parking locations with higher availability. Therefore, the aim of this study is to provide short-term predictions of available parking spaces with a low volume of data. The open parking lot provides parking spaces free of charge and one such parking lot, located beside a shopping center, was selected for this study. Parking availability data for 21 days were collected where 19 days were used for training, while multiple periods of the remaining 2 days were used to test and evaluate the prediction methods. The test dataset consists of data from a weekday and a weekend. Based on the reviewed literature, three prediction methods suitable for short-term prediction were selected, namely, long short-term memory (LSTM), seasonal autoregressive integrated moving average with exogenous variables (SARIMAX), and the Ensemble-based method. The LSTM method is a deep learning-based method, while SARIMAX is a regression-based method, and the Ensemble method is based on decision trees and random forest to provide predictions. The performance of the three prediction methods with a low volume of data and the use of visitor trends data as an exogenous variable was evaluated. Based on the test prediction results, the LSTM and Ensemble-based methods provided better short-term predictions at multiple times on a weekday, while the Ensemble-based method provided better predictions over the weekend. However, the use of visitor trend data did not facilitate improving the predictions of SARIMAX and the Ensemble-based method, while it improved the LSTM prediction for the weekend. © 2022 Vijay Paidi, published by De Gruyter

    Parking support model for open parking lots

    No full text
    Parking is a common process performed by vehicle drivers when they arrive at their destination. It is considered to be the last mile transportation problem of personal vehicles. Some of the common problems observed by drivers are additional cruising, congestion, pollution, and driver frustration. This thesis is focused on open parking lots that provide free parking spaces. Since parking spaces are provided free, open parking lots are in high demand leading to additional cruising and pollution. One of the primary reasons for these problems is the lack of information on parking availability. Such information can be provided using a parking support model, or a smart parking system. As open parking lots do not provide any direct return on investments, no parking support models were available on the market. Therefore, this thesis aims to develop a parking support model suitable for open parking lots which can facilitate in providing real-time and short-term forecast of parking availability. This thesis also examines the magnitude of additional cruising and CO2 emissions observed in an open parking lot. A thermal camera was utilized for collecting data on open parking lots as it is not susceptible to varying illumination and environmental conditions. Since there were no pre-trained algorithms for enabling object detection using thermal camera images, a dataset was created with varying environmental and illumination conditions. This dataset was utilized by deep learning algorithms to facilitate multi-object, real-time detection. The developed parking support model facilitates in providing a real-time and short-term forecast of parking availability. Despite the use of low volume of data, the methods utilized in this thesis facilitated providing better detection and forecasting results. Algorithms, such as ResNet18 and Yolo, facilitated in providing real-time, multi-object detection with high accuracy. Similarly, a short-term forecast of parking availability was provided for the open parking lot using methods such as the Ensemble-based method, LSTM and SARIMAX. Ensemble-based method and LSTM provided better test prediction results with lower errors compared to SARIMAX. A new CO2 emissions model was proposed to estimate the magnitude of emissions observed at an open parking lot. The mean CO2 emissions of additional cruising is 2.7 times more than optimal cruising. Despite the individual CO2 emissions of vehicles being lower, aggregating CO2 emissions from multiple vehicles leads to higher pollution. This problem can be reduced by utilizing the parking support model

    Parking support model for open parking lots

    No full text
    Parking is a common process performed by vehicle drivers when they arrive at their destination. It is considered to be the last mile transportation problem of personal vehicles. Some of the common problems observed by drivers are additional cruising, congestion, pollution, and driver frustration. This thesis is focused on open parking lots that provide free parking spaces. Since parking spaces are provided free, open parking lots are in high demand leading to additional cruising and pollution. One of the primary reasons for these problems is the lack of information on parking availability. Such information can be provided using a parking support model, or a smart parking system. As open parking lots do not provide any direct return on investments, no parking support models were available on the market. Therefore, this thesis aims to develop a parking support model suitable for open parking lots which can facilitate in providing real-time and short-term forecast of parking availability. This thesis also examines the magnitude of additional cruising and CO2 emissions observed in an open parking lot. A thermal camera was utilized for collecting data on open parking lots as it is not susceptible to varying illumination and environmental conditions. Since there were no pre-trained algorithms for enabling object detection using thermal camera images, a dataset was created with varying environmental and illumination conditions. This dataset was utilized by deep learning algorithms to facilitate multi-object, real-time detection. The developed parking support model facilitates in providing a real-time and short-term forecast of parking availability. Despite the use of low volume of data, the methods utilized in this thesis facilitated providing better detection and forecasting results. Algorithms, such as ResNet18 and Yolo, facilitated in providing real-time, multi-object detection with high accuracy. Similarly, a short-term forecast of parking availability was provided for the open parking lot using methods such as the Ensemble-based method, LSTM and SARIMAX. Ensemble-based method and LSTM provided better test prediction results with lower errors compared to SARIMAX. A new CO2 emissions model was proposed to estimate the magnitude of emissions observed at an open parking lot. The mean CO2 emissions of additional cruising is 2.7 times more than optimal cruising. Despite the individual CO2 emissions of vehicles being lower, aggregating CO2 emissions from multiple vehicles leads to higher pollution. This problem can be reduced by utilizing the parking support model

    CO2 Emissions Induced by Vehicles Cruising for Empty Parking Spaces in an Open Parking Lot

    No full text
    Parking lots are places of high air pollution as numerous vehicles cruise to find vacant parking places. Open parking lots receive high vehicle traffic, and when limited empty spaces are available it leads to problems, such as congestion, pollution, and driver frustration. Due to lack of return on investment, open parking lots are little studied, and there is a research gap in understanding the magnitude of CO2 emissions and cruising observed at open parking lots. Thus, this paper aims to estimate CO2 emissions and cruising distances observed at an open parking lot. A thermal camera was utilized to collect videos during peak and non-peak hours. The resulting videos were utilized to collect cruising trajectories of drivers searching for empty parking spaces. These trajectories were analyzed to identify optimal and non-optimal cruising, time to park, and walking distances of drivers. A new CO2 model was proposed to estimate emissions in smaller geographical regions, such as open parking lots. The majority of drivers tend to choose parking spaces near a shopping center, and they prefer to cruise non-optimal distances to find an empty parking space near the shopping center. The observed mean non-optimal cruising distance is 2.7 times higher than the mean optimal cruising distance. Excess CO2 emissions and non-optimal cruising were mainly observed during visitor peak hours when there were limited or no empty parking spaces. During visitor peak hours, several vehicles could not find an empty parking space in the region of interest, which also leads to excess cruising

    Developing decision support systems for last mile transportation problems

    No full text
    Last mile transportation is the most problematic phase of transportation needing additional research and effort. Longer waits or search times, lack of navigational directions and real-time information are some of the common problems associated with last mile transportation. Inefficient last mile transportation has an impact on the environment, fuel consumption, user satisfaction and business opportunities. Last mile problems exist in several transportation domains, such as: the landing of airplanes, docking of ships, parking of vehicles, attended home deliveries, etc. While there are dedicated inter-connected decision support systems available for ships and aircraft, similar systems are not widely utilized in parking or attended handover domains. Therefore, the scope of this thesis covers last mile transportation problems in parking and attended handover domains. One problem area for parking and attended handovers is due to lack of real-time information to the driver or consumer. The second problem area is dynamic scheduling where the handover vehicle must traverse additional distance to multiple handover locations due to lack of optimized routes. Similarly, during parking, lack of navigational directions to an empty parking space can lead to increased fuel consumption and CO2 emissions. Therefore, aim of this thesis is to design and develop decision support systems for last mile transportation problems by holistically addressing real time customer communication and dynamic scheduling problem areas. The problem areas discussed in this thesis consists of persistent issues even though they were widely discussed in the literature. In order to investigate the problem areas, microdata analysis approach was implemented in the thesis. The phases involved in Microdata analysis are: data collection, data processing, data storage, data analysis and decision-making. Other similar research domains, such as: computer science or statistics also involve phases such as data collection, processing, storage and analysis. These research domains also work in the fields of decision support systems or knowledge creation. However, knowledge creation or decision support systems is not a mandatory phase in these research domains, unlike Microdata analysis. Three papers are presented in this thesis, with two papers focusing on parking domains, while the third paper focuses on attended handover domains. The first paper identifies available smart parking tools, applications and discusses their uses and drawbacks in relation to open parking lots. The usage of cameras in identifying parking occupancy was recognized as one of the suitable tools in this paper. The second paper uses a thermal camera to collect the parking lot data, while deep learning methodologies were used to identify parking occupancy detection. Multiple deep learning networks were evaluated for identifying parking spaces and one method was considered suitable for acquiring real time parking occupancy. The acquired parking occupancy information can be communicated to the user to address real-time customer communication problems. However, the decision support system (DSS) to communicate parking occupancy information still needs to be developed. The third paper focuses on the attended handovers domain where a decision support system was reported which addresses real-time customer communication and dynamic scheduling problems holistically. Based on a survey, customers accepted the use of mobile devices for enabling a real-time information flow for improving customer satisfaction. A pilot test on vehicle routing was performed where the decision support system reduced the vehicle routing distance compared to the route taken by the driver. The three papers work in developing decision support systems for addressing major last mile transportation problems in parking and attended handover domains, thus improving customer satisfaction, and business opportunities, and reducing fuel costs, and pollution

    Developing decision support systems for last mile transportation problems

    No full text
    Last mile transportation is the most problematic phase of transportation needing additional research and effort. Longer waits or search times, lack of navigational directions and real-time information are some of the common problems associated with last mile transportation. Inefficient last mile transportation has an impact on the environment, fuel consumption, user satisfaction and business opportunities. Last mile problems exist in several transportation domains, such as: the landing of airplanes, docking of ships, parking of vehicles, attended home deliveries, etc. While there are dedicated inter-connected decision support systems available for ships and aircraft, similar systems are not widely utilized in parking or attended handover domains. Therefore, the scope of this thesis covers last mile transportation problems in parking and attended handover domains. One problem area for parking and attended handovers is due to lack of real-time information to the driver or consumer. The second problem area is dynamic scheduling where the handover vehicle must traverse additional distance to multiple handover locations due to lack of optimized routes. Similarly, during parking, lack of navigational directions to an empty parking space can lead to increased fuel consumption and CO2 emissions. Therefore, aim of this thesis is to design and develop decision support systems for last mile transportation problems by holistically addressing real time customer communication and dynamic scheduling problem areas. The problem areas discussed in this thesis consists of persistent issues even though they were widely discussed in the literature. In order to investigate the problem areas, microdata analysis approach was implemented in the thesis. The phases involved in Microdata analysis are: data collection, data processing, data storage, data analysis and decision-making. Other similar research domains, such as: computer science or statistics also involve phases such as data collection, processing, storage and analysis. These research domains also work in the fields of decision support systems or knowledge creation. However, knowledge creation or decision support systems is not a mandatory phase in these research domains, unlike Microdata analysis. Three papers are presented in this thesis, with two papers focusing on parking domains, while the third paper focuses on attended handover domains. The first paper identifies available smart parking tools, applications and discusses their uses and drawbacks in relation to open parking lots. The usage of cameras in identifying parking occupancy was recognized as one of the suitable tools in this paper. The second paper uses a thermal camera to collect the parking lot data, while deep learning methodologies were used to identify parking occupancy detection. Multiple deep learning networks were evaluated for identifying parking spaces and one method was considered suitable for acquiring real time parking occupancy. The acquired parking occupancy information can be communicated to the user to address real-time customer communication problems. However, the decision support system (DSS) to communicate parking occupancy information still needs to be developed. The third paper focuses on the attended handovers domain where a decision support system was reported which addresses real-time customer communication and dynamic scheduling problems holistically. Based on a survey, customers accepted the use of mobile devices for enabling a real-time information flow for improving customer satisfaction. A pilot test on vehicle routing was performed where the decision support system reduced the vehicle routing distance compared to the route taken by the driver. The three papers work in developing decision support systems for addressing major last mile transportation problems in parking and attended handover domains, thus improving customer satisfaction, and business opportunities, and reducing fuel costs, and pollution

    Short-term prediction of parking availability in an open parking lot

    No full text
    The parking of cars is a globally recognized problem, especially at locations where there is a high demand for empty parking spaces. Drivers tend to cruise additional distances while searching for empty parking spaces during peak hours leading to problems such as pollution, congestion, and driver frustration. Providing short-term predictions of parking availability would facilitate the driver in making informed decisions and planning their arrival to be able to choose parking locations with higher availability. Therefore, the aim of this study is to provide short-term predictions of available parking spaces with a low volume of data. The open parking lot provides parking spaces free of charge and one such parking lot, located beside a shopping center, was selected for this study. Parking availability data for 21 days was collected where 19 days were used for training, while multiple periods of the remaining 2 days were used to test and evaluate the prediction methods. The test dataset consists of data from a weekday and a weekend. Based on the reviewed literature, three prediction methods suitable for short-term prediction were selected, namely, Long-short term memory (LSTM), Seasonal autoregressive integrated moving average with exogenous variables (SARIMAX), and the Ensemble-based method. TheLSTM method is a deep learning-based method, while SARIMAX is a regression-based method, and the Ensemble method is based on decision trees and random forest to provide predictions. The performance of the three prediction methods with low volume of data and the use of visitor trends data as an exogenous variable was evaluated. Based on the test prediction results, the LSTM and Ensemble-based methods provided better short-term predictions at multiple times on a weekday, while the Ensemble-based method provided better predictions over the weekend. However, the use of visitor trend data did not facilitate improving the predictions of SARIMAX and the Ensemble-based method, while it improved the LSTM prediction for the weekend

    Short-term prediction of parking availability in an open parking lot

    No full text
    The parking of cars is a globally recognized problem, especially at locations where there is a high demand for empty parking spaces. Drivers tend to cruise additional distances while searching for empty parking spaces during peak hours leading to problems such as pollution, congestion, and driver frustration. Providing short-term predictions of parking availability would facilitate the driver in making informed decisions and planning their arrival to be able to choose parking locations with higher availability. Therefore, the aim of this study is to provide short-term predictions of available parking spaces with a low volume of data. The open parking lot provides parking spaces free of charge and one such parking lot, located beside a shopping center, was selected for this study. Parking availability data for 21 days was collected where 19 days were used for training, while multiple periods of the remaining 2 days were used to test and evaluate the prediction methods. The test dataset consists of data from a weekday and a weekend. Based on the reviewed literature, three prediction methods suitable for short-term prediction were selected, namely, Long-short term memory (LSTM), Seasonal autoregressive integrated moving average with exogenous variables (SARIMAX), and the Ensemble-based method. TheLSTM method is a deep learning-based method, while SARIMAX is a regression-based method, and the Ensemble method is based on decision trees and random forest to provide predictions. The performance of the three prediction methods with low volume of data and the use of visitor trends data as an exogenous variable was evaluated. Based on the test prediction results, the LSTM and Ensemble-based methods provided better short-term predictions at multiple times on a weekday, while the Ensemble-based method provided better predictions over the weekend. However, the use of visitor trend data did not facilitate improving the predictions of SARIMAX and the Ensemble-based method, while it improved the LSTM prediction for the weekend

    Usability evaluation of an e-Service in a Public website

    No full text
    corecore