93 research outputs found

    A Potential Aid in the Target Selection for the Comet Interceptor Mission

    Full text link
    The upcoming Comet Interceptor mission involves a parking phase around the Sun-Earth L2 point before transferring to intercept the orbit of a long period comet, interstellar object or a back-up target in the form of a short-period comet. The target is not certain to be known before the launch in 2029. During the parking phase there may thus arise a scenario wherein a decision needs to be taken of whether to go for a particular comet or whether to discard that option in the hope that a better target will appear within a reasonable time frame later on. We present an expectation value-based formalism that could aid in the associated decision making provided that outlined requirements for its implementation exist.Comment: Accepted for publication in Planetary and Space Scienc

    A Potential Aid in the Target Selection for the Comet Interceptor Mission

    Get PDF
    The upcoming Comet Interceptor mission involves a parking phase around the Sun-Earth L2 point before transferring to intercept the orbit of a long period comet, interstellar object or a back-up target in the form of a short-period comet. The target is not certain to be known before the launch in 2029. During the parking phase there may thus arise a scenario wherein a decision needs to be taken of whether to go for a particular comet or whether to discard that option in the hope that a better target will appear within a reasonable time frame later on. We present an expectation value-based formalism that could aid in the associated decision making provided that outlined requirements for its implementation exist

    Solar wind interaction with comet 67P: impacts of corotating interaction regions

    Get PDF
    International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∌1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∌5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∌10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∌1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∌1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Effective ion speeds at ~200–250 km from comet 67P/Churyumov–Gerasimenko near perihelion

    Get PDF
    In 2015 August, comet 67P/Churyumov–Gerasimenko, the target comet of the ESA Rosetta mission, reached its perihelion at ~1.24 au. Here, we estimate for a three-day period near perihelion, effective ion speeds at distances ~200–250 km from the nucleus. We utilize two different methods combining measurements from the Rosetta Plasma Consortium (RPC)/Mutual Impedance Probe with measurements either from the RPC/Langmuir Probe or from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) (the latter method can only be applied to estimate the effective ion drift speed). The obtained ion speeds, typically in the range 2–8 km s⁻Âč, are markedly higher than the expected neutral outflow velocity of ~1 km s⁻Âč. This indicates that the ions were de-coupled from the neutrals before reaching the spacecraft location and that they had undergone acceleration along electric fields, not necessarily limited to acceleration along ambipolar electric fields in the radial direction. For the limited time period studied, we see indications that at increasing distances from the nucleus, the fraction of the ions’ kinetic energy associated with radial drift motion is decreasing

    Circulating soluble IL-6 receptor associates with plaque inflammation but not with atherosclerosis severity and cardiovascular risk.

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to ethical restrictions.BACKGROUND: The residual cardiovascular risk in subjects receiving guideline-recommended therapy is related to persistent vascular inflammation and IL-6 represents a target for its treatment. IL-6 binds to receptors on leukocytes and hepatocytes and/or by forming complexes with soluble IL-6 receptors (sIL-6R) binding to gp130 which is present on all cells. Here we aimed to estimate the associations of these two pathways with risk of cardiovascular disease (CVD). METHODS: IL-6 and sIL-6R were analyzed using the proximity extension assay. Baseline plasma samples were obtained from participants in the prospective Malmö Diet and Cancer (MDC) study (n = 4661), the SUMMIT VIP study (n = 1438) and the Carotid Plaque Imaging Project (CPIP, n = 285). Incident clinical events were obtained through national registers. Plaques removed at surgery were analyzed by immunohistochemistry and biochemical methods. RESULTS: During 23.1 ± 7.0 years follow-up, 575 subjects in the MDC cohort suffered a first myocardial infarction. Subjects in the highest tertile of IL-6 had an increased risk compared to the lowest tertile (HR and 95% CI 2.60 [2.08-3.25]). High plasma IL-6 was also associated with more atherosclerosis, increased arterial stiffness, and impaired endothelial function in SUMMIT VIP, but IL-6 was only weakly associated with plaque inflammation in CPIP. sIL-6R showed no independent association with risk of myocardial infarction, atherosclerosis severity or vascular function, but was associated with plaque inflammation. CONCLUSIONS: Our findings show that sIL-6R is a poor marker of CVD risk and associated vascular changes. However, the observation that sIL-6R reflects plaque inflammation highlights the complexity of the role of IL-6 in CVD.Swedish Heart and Lung FoundationSwedish Society for Medical ResearchSwedish Research CouncilAlbert PÄhlssons FoundationSUS foundations and fundsALFSwedish Society of MedicineLund UniversitySwedish Foundation for Strategic ResearchInnovative Medicines InitiativeKnut and Alice Wallenberg FoundationNational Institute for Health and Care Research (NIHR
    • 

    corecore