23 research outputs found

    Microsatellite markers for urochloa Humidicola (poaceae) and their transferability to other urochloa species

    Get PDF
    Urochloa humidicola is a warm-season grass commonly used as forage in the tropics and is recognized for its tolerance to seasonal flooding. This grass is an important forage species for the Cerrado and Amazon regions of Brazil. U. humidicola is a polyploid species with variable ploidy (6X-9X) and facultative apomixis with high phenotypic plasticity. However, this apomixis and ploidy, as well as the limited knowledge of the genetic basis of the germplasm collection, have constrained genetic breeding activities, yet microsatellite markers may enable a better understanding of the species' genetic composition. This study aimed to develop and characterize new polymorphic microsatellite molecular markers in U. humidicola and to evaluate their transferability to other Urochloa species. Findings: A set of microsatellite markers for U. humidicola was identified from two new enriched genomic DNA libraries: the first library was constructed from a single sexual genotype and the second from a pool of eight apomictic genotypes selected on the basis of previous results. Of the 114 loci developed, 72 primer pairs presented a good amplification product, and 64 were polymorphic among the 34 genotypes tested. The number of bands per simple sequence repeat (SSR) locus ranged from 1 to 29, with a mean of 9.6 bands per locus. The mean polymorphism information content (PIC) of all loci was 0.77, and the mean discrimination power (DP) was 0.87. STRUCTURE analysis revealed differences among U. humidicola accessions, hybrids, and other Urochloa accessions. The transferability of these microsatellites was evaluated in four species of the genus, U. brizantha, U. decumbens, U. ruziziensis, and U. dictyoneura, and the percentage of transferability ranged from 58.33% to 69.44% depending on the species. Conclusions: This work reports new polymorphic microsatellite markers for U. humidicola that can be used for breeding programs of this and other Urochloa species, including genetic linkage mapping, quantitative trait loci identification, and marker-assisted selection8

    Evidence Of Allopolyploidy In Urochloa Humidicola Based On Cytological Analysis And Genetic Linkage Mapping

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The African species Urochloa humidicola (Rendle) Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle) Schweick.) is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F-1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR)-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs) and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs) were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus) was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi-to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, Smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL) analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for a co-segregating marker.114Brazilian Agricultural Research Corporation (Embrapa)Brazilian National Council for Scientific and Technological Development (CNPq) [478262/2004-3, 502336/2005-6, 482458/2007-0]State of Sao Paulo Research Foundation (FAPESP) [2005/51010-0, 2008/52197-4]Foundation for Science and Technological Development of the State of Mato Grosso do Sul (Fundect)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)FAPESP [2007/57022-5, 2010/50032-8]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES - EMBRAPA Program)CNPq [304914/2010-0]CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Molecular Genetic Variability, Population Structure and Mating System in Tropical Forages

    Get PDF
    Microsatellite (SSR) markers were developed for the following tropical forage species, using accessions available from the plant genetic resources (PGR) collections held by EMBRAPA (Brazilian Agricultural Research Corporation): Brachiaria brizantha, B. humidicola, Panicum maximum, Paspalum spp., Stylosanthes capitata, S. guianensis, S. macrocephala, Calopogonium mucunoides and Centrosema spp. The markers were used to analyse population structure and genetic diversity, evolution and origin of the genetic variability in the centre of origin, mating systems and genetic resources in EMBRAPA’s germplasm bank. The results shed light on the amount of genetic variation within and between populations, revealed the need in some cases for further plant collection to adequately represent the species in PGR collections, allowed us to assemble core collections (subsets of the total collections) that should contain most of the available diversity and (in the case of the legumes) showed the need to avoid unwanted outcrossing when regenerating conserved material. The data will allow plant breeders to better select accessions for hybrid production, discriminate between genotypes and use marker-assisted selection in breeding programs. Our results will also underpin the construction of genetic maps, mapping of genes of agronomic interest and numerous other studies on genetic variability, population structure, gene flow and reproductive systems for the tropical forage species studied in this work

    progeny genotypes

    No full text
    Genotypes of each Tibouchina pulchra progeny plant. We germinated seeds from adult individuals and sampled from ten to 21 progeny individuals when the seedlings reached a size enough to perform DNA extraction. First column refers to the family (fruit) that the seedlings belong. Second column describes the progeny index indicating the area (P or S), mother and direction of fruit collection. Third column refers to the loci and 4th to 7th column refers to the allele at that loci

    points

    No full text
    Geographical information about each adult individual of Tibouchina pulchra

    CHARACTERIZATION OF MICROSATELLITE LOCI IN HIMATANTHUS DRASTICUS (APOCYNACEAE), A MEDICINAL PLANT FROM THE BRAZILIAN SAVANNA

    Get PDF
    Premise of the study: We developed a new set of microsatellite markers for studying the genome of the janaguba tree, Himatanthus drasticus (Mart.) Plumel, which is used in folk medicine in northeastern Brazil. These novel markers are being used to evaluate the effect of harvesting on the genetic structure and diversity of natural populations of this species. Methods and Results: Microsatellite loci were isolated from an enriched H. drasticus genomic library. Nine primer pairs successfully amplified polymorphic microsatellite regions, with an average of 8.5 alleles per locus. The average values of observed and expected heterozygosity were 0.456 and 0.601, respectively. Conclusions: The microsatellite markers described here are valuable tools for population genetics studies of H. drasticus. The majority of the primers also amplified sequences in the genome of another species of the same genus. This new set of markers may be useful in designing a genetic conservation strategy and a sustainable management plan for the species

    adults genotypes

    No full text
    Genotypes of each Tibouchina pulchra adult plant. We sampled individuals occurring in 14 distinct populations. First column refers to individual index comprising their “area” (P or S), their population (Alm—Almada; Cam— Camburi; Pro—Promirim; Pur—Puruba; Sed—Sede; Uba—Ubatumirim; Zer—Zero; Ent—Entrada; Faz—Fazenda; Kso—Km88; Kss—Km86; Mir—Mirante; Poc—Poço do Pito; Pos—Posto II) and number. Second column refers to the loci and 3rd to 6th column refers to the allele at that loci

    Characterization of microsatellite loci in Himatanthus drasticus

    No full text
    Premise of the study: We developed a new set of microsatellite markers for studying the genome of the janaguba tree, Himatanthus drasticus (Mart.) Plumel, which is used in folk medicine in northeastern Brazil. These novel markers are being used to evaluate the effect of harvesting on the genetic structure and diversity of natural populations of this species. Methods and Results: Microsatellite loci were isolated from an enriched H. drasticus genomic library. Nine primer pairs successfully amplified polymorphic microsatellite regions, with an average of 8.5 alleles per locus. The average values of observed and expected heterozygosity were 0.456 and 0.601, respectively. Conclusions: The microsatellite markers described here are valuable tools for population genetics studies of H. drasticus. The majority of the primers also amplified sequences in the genome of another species of the same genus. This new set of markers may be useful in designing a genetic conservation strategy and a sustainable management plan for the species

    Suggested origin of <i>U</i>. <i>humidicola</i>.

    No full text
    <p>Illustrative scheme of the origin of the hexaploid <i>Urochloa humidicola</i>, based on cytogenetic and molecular data. The two different genomes are indicated as A and B. The figures represent the amplification profiles of two microsatellite loci (I. BhUNICAMP010 and II. BhUNICAMP037) and the corresponding amplification regions of genomes A and B.</p
    corecore