35 research outputs found

    Synthetic observations of internal gravity waves in the solar atmosphere

    Full text link
    We study the properties of internal gravity waves (IGWs) detected in synthetic observations that are obtained from realistic numerical simulation of the solar atmosphere. We used four different simulations of the solar magneto-convection performed using the CO5BOLD code. A magnetic-field-free model and three magnetic models were simulated. The latter three models start with an initial vertical, homogeneous field of 10, 50, and 100 G magnetic flux density, representing different regions of the quiet solar surface. We used the NICOLE code to compute synthetic spectral maps from all the simulated models for the two magnetically insensitive neutral iron lines Fe I 5434 {\AA} and 5576 {\AA}. We find the signatures of the internal gravity waves in the synthetic spectra to be consistent with observations of the real Sun. The phase differences obtained using the spectral lines are significantly different from the phase differences in the simulation. The phase coherency between two atmospheric layers in the gravity wave regime is height dependent and is seen to decrease with the travel distance between the observed layers. We conclude that the energy flux of IGWs determined from the phase difference analysis may be overestimated by an order of magnitude. Spectral lines that are weak and less temperature sensitive may be better suited to detecting internal waves and accurately determining their energy flux in the solar atmosphere.Comment: To appear in Astronomy & Astrophysics, 12 pages, 12 figures, abridged abstrac

    On the effect of oscillatory phenomena on Stokes inversion results

    Full text link
    Stokes inversion codes are crucial in returning properties of the solar atmosphere, such as temperature and magnetic field strength. However, the success of such algorithms to return reliable values can be hindered by the presence of oscillatory phenomena within magnetic wave guides. Returning accurate parameters is crucial to both magnetohydrodynamics studies and solar physics in general. Here, we employ a simulation featuring propagating MHD waves within a flux tube with a known driver and atmospheric parameters. We invert the Stokes profiles for the 6301 \unicode{0xc5} and 6302 \unicode{0xc5} line pair emergent from the simulations using the well-known Stokes Inversions from Response functions (SIR) code to see if the atmospheric parameters can be returned for typical spatial resolutions at ground-based observatories. The inversions return synthetic spectra comparable to the original input spectra, even with asymmetries introduced in the spectra from wave propagation in the atmosphere. The output models from the inversions match closely to the simulations in temperature, line-of-sight magnetic field and line-of-sight velocity within typical formation heights of the inverted lines. Deviations from the simulations are seen away from these height regions. The inversion results are less accurate during passage of the waves within the line formation region. The original wave period could be recovered from the atmosphere output by the inversions, with empirical mode decomposition performing better than the wavelet approach in this task.Comment: Accepted for publication in Phil. Trans. R. Soc. A, 20 pages, 4 figure

    Acoustic-gravity wave propagation characteristics in 3D radiation hydrodynamic simulations of the solar atmosphere

    Full text link
    There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including ±180∘\pm180^\circ phase jumps.Comment: 19 pages, 15 figure

    3D Simulations of Magnetohydrodynamic Waves in the Magnetized Solar Atmosphere

    Get PDF
    We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.Comment: Appeared in ApJ, 11 pages, 12 figure

    Wave propagation and energy transport in the magnetic network of the Sun

    Full text link
    We investigate wave propagation and energy transport in magnetic elements, which are representatives of small scale magnetic flux concentrations in the magnetic network on the Sun. This is a continuation of earlier work by Hasan et al. (2005). The new features in the present investigation include a quantitative evaluation of the energy transport in the various modes and for different field strengths, as well as the effect of the boundary-layer thickness on wave propagation. We carry out 2-D MHD numerical simulations of magnetic flux concentrations for strong and moderate magnetic fields. Waves are excited in the tube and ambient medium by a transverse impulsive motion of the lower boundary. The nature of the modes excited depends on the value of beta. Mode conversion occurs in the moderate field case when the fast mode crosses the beta=1 contour. In the strong field case the fast mode undergoes conversion from predominantly magnetic to predominantly acoustic when waves are leaking from the interior of the flux concentration to the ambient medium. We also estimate the energy fluxes in the acoustic and magnetic modes. The main conclusions of our work are twofold: firstly, for transverse, impulsive excitation, flux tubes/sheets with strong fields are more efficient than those with weak fields in providing acoustic flux to the chromosphere. However, there is insufficient energy in the acoustic flux to balance the chromospheric radiative losses in the network, even for the strong field case. Secondly, the acoustic emission from the interface between the flux concentration and the ambient medium decreases with the width of the boundary layer.Comment: Accepted for publication in A&A, 13 pages, 10 figures. v2: improved placement and quality of figures, acknowledgments, acceptance dat
    corecore