624 research outputs found

    Probing cosmological parameters with GRBs

    Full text link
    In light of the recent finding of the narrow clustering of the geometrically-corrected gamma-ray energies emitted by Gamma Ray Bursts (GRBs), we investigate the possibility to use these sources as standard candles to probe cosmological parameters such as the matter density Omega_m and the cosmological constant energy density Omega_Lambda. By simulating different samples of gamma-ray bursts, based on recent observational results, we find that Omega_m (with the prior Omega_m + Omega_Lambda = 1) can be determined with accuracy ~7% with data from 300 GRBs, provided a local calibration of the standard candles be achieved.Comment: 4 pages, 2 figures, to appear in the Proceedings of the Conference "30 Years of GRB Discovery", Santa Fe, New Mexico, USA, September 8-12, 200

    Iron line emission in X-ray afterglows

    Get PDF
    Recent observations of X-ray afterglows reveal the presence of a redshifted Kalpha iron line in emission in four bursts. In GRB 991216, the line was detected by the low energy grating of Chandra, which showed the line to be broad, with a full width of ~15,000 km/s. These observations indicate the presence of a >1 solar mass of iron rich material in the close vicinity of the burst, most likely a supernova remnant. The fact that such strong lines are observed less than a day after the trigger strongly limits the size of the remnant, which must be very compact. If the remnant had the observed velocity since the supernova explosion, its age would be less than a month. In this case nickel and cobalt have not yet decayed into iron. We show how to solve this paradox.Comment: 3 pages, to appear in the proceedings of the the 2nd Workshop on Gamma-Ray Bursts in the Afterglow Era, Rome, Oct. 200

    Ultra high energy neutrinos from gamma ray bursts

    Full text link
    Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.Comment: Adiabatic/synchrotron losses from protons/pions/muons shown to be negligible. Accepted for publication in Phys. Rev. Letters. RevTe

    On Particle Acceleration around Shocks. III. Shock Waves Moving at Arbitrary Speed. The Case of Large-Scale Magnetic Field and Anisotropic Scattering

    Get PDF
    A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in work by Vietri and Blasi. We use this method and somewhat extend it in order to include the effect of a large-scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scattering on spectra and anisotropies of the distribution function of the accelerated particles

    Evolution of perturbed accelerating relativistic shock waves

    Get PDF
    We study the evolution of an accelerating hyperrelativistic shock under the presence of upstream inhomogeneities wrinkling the discontinuity surface. The investigation is conducted by means of numerical simulations using the PLUTO code for astrophysical fluid dynamics. The reliability and robustness of the code are demonstrated against well known results coming from the linear perturbation theory. We then follow the nonlinear evolution of two classes of perturbing upstream atmospheres and conclude that no lasting wrinkle can be preserved indefinitely by the flow. Finally we derive analytically a description of the geometrical effects of a turbulent upstream ambient on the discontinuity surface.Comment: 54 Pages, 24 Figures. Accepted for Publication in the Astrophysical Journa

    GeV Photons from Ultra High Energy Cosmic Rays accelerated in Gamma Ray Bursts

    Full text link
    Gamma-ray bursts are produced by the dissipation of the kinetic energy of a highly relativistic fireball, via the formation of a collisionless shock. When this happens, Ultra High Energy Cosmic Rays up to 10^20 eV are produced. I show in this paper that these particles produce, via synchrotron emission as they cross the acceleration region, photons up to 300 GeV which carry away a small, ~0.01, but non-negligible fraction of the total burst energy. I show that, when the shock occurs with the interstellar medium, the optical depth to photon-photon scattering, which might cause energy degradation of the photons, is small. The burst thusly produced would be detected at Earth simultaneoulsy with the parent gamma-ray burst, although its duration may differ significantly from that of the lower energy photons. The expected fluences, ~10^{-5}-10^{-6} erg/cm^2 are well within the range of planned detectors. A new explanation for the exceptional burst GRB 940217 is discussed.Comment: Accepted for publication in The Physical Review Letters. 4 pages, RevTeX needed, no figure

    The rest-frame UV-to-optical spectroscopy of APM 08279+5255 - BAL classification and black hole mass estimates

    Get PDF
    We present the analysis of the rest-frame optical-to-UV spectrum of APM 08279+5255, a well-known lensed broad absorption line (BAL) quasar at z=3.911z = 3.911. The spectroscopic data are taken with the optical DOLoRes and near-IR NICS instruments at TNG, and include the previously unexplored range between C III] λ\lambda1910 and [O III] λλ\lambda\lambda4959,5007. We investigate the possible presence of multiple BALs by computing "balnicity" and absorption indexes (i.e. BI, BI0_0 and AI) for the transitions Si IV λ\lambda1400, C IV λ\lambda1549, Al III λ\lambda1860 and Mg II λ\lambda2800. No clear evidence for the presence of absorption features is found in addition to the already known, prominent BAL associated to C IV, which supports a high-ionization BAL classification for APM 08279+5255. We also study the properties of the [O III], Hβ\beta and Mg II emission lines. We find that [O III] is intrinsically weak (F[OIII]/FHβ0.04F_{\rm [OIII]}/F_{\rm H\beta} \lesssim 0.04), as it is typically found in luminous quasars with a strongly blueshifted C IV emission line (\sim2500 km s1^{-1} for APM 08279+5255). We compute the single-epoch black hole mass based on Mg II and Hβ\beta broad emission lines, finding MBH=(2÷3)×1010μ1M_{\rm BH} = (2 \div 3) \times 10^{10}\mu^{-1} M_\odot, with the magnification factor μ\mu that can vary between 4 and 100 according to CO and rest-frame UV-to-mid-IR imaging respectively. Using a Mg II equivalent width (EW)-to-Eddington ratio relation, the EWMgII27_{\rm MgII} \sim 27 \AA\ measured for APM 08279+5255 translates into an Eddington ratio of \sim0.4, which is more consistent with μ=4\mu=4. This magnification factor also provides a value of MBHM_{\rm BH} that is consistent with recent reverberation-mapping measurements derived from C IV and Si IV.Comment: 10 pages, 4 figures, 4 tables, accepted for publication in A&
    corecore