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ABSTRACT

Amathematical approach to investigate particle acceleration at shockwaves moving at arbitrary speed in amedium
with arbitrary scattering properties was first discussed in work by Vietri and Blasi. We use this method and somewhat
extend it in order to include the effect of a large-scale magnetic field in the upstream plasma, with arbitrary orientation
with respect to the direction of motion of the shock.We also use this approach to investigate the effects of anisotropic
scattering on spectra and anisotropies of the distribution function of the accelerated particles.

Subject headinggs: cosmic rays — shock waves

1. INTRODUCTION

The theory of particle acceleration at shock fronts moving
with arbitrary speeds (fromNewtonian to ultrarelativistic) can be
formulated in a simple and exact form (Vietri 2003; Freiling et al.
2003) at least in the so-called test particle limit, which neglects
the dynamical reaction of accelerated particles on the shock. In
this framework, all the basic physical ingredients can be taken
into account in an exact way, with special reference to the type
of scattering that is responsible for the particles returning to the
shock front from the upstream and downstream plasmas. The in-
formation about scattering is introduced in the problem through
the function w(�; �0 ), which expresses the probability per unit
length that a particle moving in the direction �0 is scattered to a
new direction �. It is worth stressing that w can have a different
functional form in the upstream and downstream plasmas, in par-
ticular, in the case of relativistic shocks.

The repeated scatterings of the particles lead eventually to a
return to the shock front, as described in terms of the conditional
probability Pu(�0; �) [Pd(�0; �)] that a particle entering the up-
stream (downstream) plasma in the direction �0 returns to the
shock and crosses it in the direction of the downstream (upstream)
plasma, �. The mathematical method adopted to calculate the two
very important functionsPu andPd based on the knowledge of the
elementary scattering function w was described in detail in Blasi
& Vietri (2005) and is based on solving two nonlinear integral-
differential equations in the two independent coordinates �0

and �.
Vietri (2003) showed on very general grounds that the spec-

trum of accelerated particles is a power law for all momenta ex-
ceeding the injection momentum. The slope of such a power law
and the anisotropy pattern of the accelerated particles near the
shock front are fully determined by the conditional probabilities
Pd and Pu and by the equation of state of the downstream plasma.
Particle acceleration at shock fronts has been previously inves-
tigated through different methods, both semianalytical (see, e.g.,
Kirk & Schneider 1987; Gallant & Achterberg 1999; Kirk et al.
2000; Achterberg et al. 2001) and numerical, by using Monte

Carlo simulations (e.g., Bednard & Ostrowski 1998; Lemoine &
Pelletier 2003; Niemiec & Ostrowski 2004; Lemoine & Revenu
2006). The theory of particle acceleration developed by Vietri
(2003) and Blasi & Vietri (2005) has been checked versus sev-
eral of these calculations existing in the literature, both in the
case of nonrelativistic shocks and for relativistic shocks, and
assuming small as well as large pitch angle isotropic scattering
(see Blasi & Vietri [2005] for an extensive discussion of these
results).

In this paper we extend the application of this new theoretical
framework to two new interesting situations: (1) the presence of
a coherent large-scale magnetic field in the upstream fluid and
(2) anisotropic scattering. In both cases we calculate the spec-
trum of accelerated particles and the distribution in pitch angle
(upstream and downstream) for shock fronts moving with arbi-
trary velocity. The results of point (1) are compared with those
obtained in Achterberg et al. (2001) that were carried out for a
parallel ultrarelativistic shock.

The paper has been inspired by the need to address several
points of phenomenological relevance.As far as relativistic shocks
are concerned, it was understood that the return of the particles
to the shock surface from the upstream region can be warranted
even in the absence of scattering, provided the background mag-
netic field is at an angle with the shock normal (e.g., Achterberg
et al. 2001). This is due to the fact that the shock and the accel-
erated particles remain spatially close and regular deflection takes
place before particles can experience the complex, possibly tur-
bulent structure of the upstreammagnetic field. This implies that
the calculation of the spectrum of the accelerated particles cannot
be calculated using a formalism based on the assumption of pitch
angle diffusion, as in the vast majority of the existing literature.

In the downstream region, the motion of the shock is always
quasi-Newtonian, even when the shock moves at ultrarelativistic
speeds. This implies that the propagation of the particles is gen-
erally well described by (small or large) pitch angle scattering.
However, the turbulent structure of the magnetic field responsible
for the scattering is likely to have an anisotropic structure and to
therefore be responsible for anisotropic scattering. In fact, even
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in the case of isotropic turbulence, the scattering can determine
an anisotropic pattern of particle scattering. It follows that a de-
termination of the spectrum able to take into account these po-
tentially important situations is very important.

The outline of the paper is as follows. In x 2 we briefly sum-
marize the theoretical framework introduced in Vietri (2003) and
Blasi & Vietri (2005). In x 3 we consider in detail the case of a
large-scale magnetic field in the upstream frame and no scatter-
ing of the particles. The scattering is assumed to be isotropic in
the downstream plasma. In x 4 we introduce the possibility of
anisotropic scattering in both upstream and downstream plas-
mas. We summarize in x 5.

2. AN EXACT SOLUTION FOR THE ACCELERATED
PARTICLES IN ARBITRARY CONDITIONS:

A SUMMARY

In this section we summarize the main characteristics of the
theory of particle acceleration developed by Vietri (2003) and
Blasi & Vietri (2005). The reader is referred to this previous
work for further details. The power of this novel approach is in its
generality: it provides an exact solution for the spectrum of the
accelerated particles and at the same time the distribution in pitch
angle that the particles acquire due to scattering in the upstream
and downstream fluids. This mathematical approach is applica-
ble without restrictions on the velocity of the fluid speeds (from
Newtonian to ultrarelativistic) and irrespective of the scattering
properties of the background plasmas (small as well as large
angle scattering, isotropic or anisotropic scattering). The only
condition that is necessary for the theory to work is common to
most if not all other semianalytical approaches existing in the
literature, namely, that the acceleration must take place in the test
particle regime; no dynamical reaction is currently introduced in
the calculations. As a consequence, the shock is assumed to con-
serve its strength during the acceleration time, and the accelera-
tion is assumed to have reached a stationary regime.

The directions of motion of the particles in the downstream
and upstream frames are identified through the cosine of their
pitch angles, all evaluated in the comoving frames of the fluids
that they refer to. The direction of motion of the shock, identi-
fied as the z-axis, is assumed to be oriented from upstream to
downstream, following the direction of motion of the fluid in the
shock frame (� ¼ 1 corresponds to particles moving toward the
downstream section).

The transport equation for the particle distribution function g,
as obtained in Vietri (2003), in a relativistically covariant deriva-
tion reads

� (uþ �)
@g

@z
¼
Z Z �

½�W (�0; �; �0; �)g(�; �)

þW (�; �0; �; �0)g(�0; �0)�d�0 d�0�þ !
@g

@�̃
; ð1Þ

in which both scattering and regular deflection in a large-scale
magnetic field are taken into account.

Here all quantities are written in the fluid frame, with the ex-
ception of the spatial coordinate z, the distance from the shock
along the shock normal, which is measured in the shock frame.
The variables u and � are, respectively, the velocity and the Lorentz
factor of the fluidwith respect to the shock, and � and� are the polar
coordinates of particles inmomentum space,measuredwith respect
to the shock normal, while �̃ is the longitudinal angle around the
magnetic field direction. As usual, � ¼ cos � and ! ¼ eB/E is
the particle Larmor frequency. The function W (�; �0; �; �0) is

the scattering probability per unit length, namely, the proba-
bility that a particle moving in the direction (�0; �0) is scattered
to a direction (�; �) after traveling a unit length.
An important simplification of equation (1) occurs when an

axial symmetry is assumed. In this case, the scattering probabil-
ity depends only on � � �� �0, and the large-scale magnetic
field can be either zero or different from zero but parallel to the
shock normal. In both cases, it is straightforward to integrate
equation (1) over �: the two-dimensional integral on the right-
hand side simplifies to an integral in one dimension, while the
term !(@g/@�̃) disappears.
These simplifications lead to

�(uþ �)
@g

@z
¼
Z

�w(�0; �)g(�)þ w (�; �0)g(�0)½ � d�0; ð2Þ

where

w(�; �0) �
Z

W (�; �0;�) d�;

g(�) � 1

2�

Z
g (�; �) d�:

The physical ingredients are all contained in the two condi-
tional probabilities Pu(�0; �) and Pd(�0; �); these two functions
provide, respectively, the probability that a particle entering the
upstream and downstream plasma along a direction �0 exits it
along a direction �. In the absence of large-scale coherent mag-
netic fields, the two functions Pu(�0; �) and Pd(�0; �) were de-
fined through a set of two integral-differential nonlinear equations
by Blasi & Vietri (2005). We report these equations here for
completeness:

Pu(�0; �)
d(�0)

uþ �0

� d(�)

uþ �

� �
¼ w(�; �0)

uþ �0

�
Z 1

�u

d�0 w(�; �
0)Pu(�0; �

0)

uþ �0 þ
Z �u

�1

d�0 w(�
0; �0)Pu(�

0; �)

uþ �0

�
Z �u

�1

d�0 Pu(�
0; �)

Z 1

�u

d�00 w(�
0; �00)Pu(�0; �

00)

uþ �00 ; ð3Þ

Pd(�0; �)
d(�0)

uþ �0

� d(�)

uþ �

� �
¼ w (�; �0)

uþ �0

þ
Z 1

�u

d�0 Pd(�
0; �)w(�0; �0)

uþ �0

�
Z �u

�1

d�0 Pd(�0; �
0)w (�; �0)

uþ �0

�
Z 1

�u

d�0 Pd(�
0; �)

Z �u

�1

d�00 w (�0; �00)Pd(�0; �
00)

uþ �00 ; ð4Þ

where

d(�) �
Z þ1

�1

w (�0; �) d�0; ð5Þ

which is unity by definition.
It is worth stressing that equation (3) automatically provides

the correct normalization for the return probability from upstream,R 1
�u

d�0Pu(�0; �
0) ¼ 1, independent of the entrance angle �0. In

x 3 we generalize the method to include the possibility of de-
flection by large-scalemagnetic fields,which is one of the achieve-
ments of this work. In that casewe show that the return probability

MORLINO, BLASI, & VIETRI1070 Vol. 658



from upstream is no longer bound to be unity due to the escape of
particles from the upstream region.

The procedure for the calculation of the slope of the spectrum
of accelerated particles, as found by Vietri (2003) and Blasi &
Vietri (2005), is as follows. For a given Lorentz factor of the shock
(�s), the velocity of the upstream fluid u ¼ �s is calculated. The
velocity ud of the downstream fluid is found from the usual jump
conditions at the shock and through the adoption of an equation
of state for the downstream fluid.

Once the two functions Pu and Pd have been calculated, the
slope of the spectrum, as discussed in Vietri (2003), is given by
the solution of the integral equation

(ud þ �)g (�) ¼
Z 1

�ud

d�QT (�; �)(ud þ � )g(� ); ð6Þ

where

QT (�; �) ¼
Z �ud

�1

d� Pu(�; �)Pd(�; �)
1� u rel�

1� u rel�

� �3�s

; ð7Þ

urel ¼ u� udð Þ/ 1� uudð Þ is the relative velocity between the up-
stream and downstream fluids, and g(�) is the angular part of the
distribution function of the accelerated particles, which contains
all the information about the anisotropy. Note that in equation (7)
all variables and functions are evaluated in the downstream frame,
while the Pu calculated through equation (3) is in the frame co-
moving with the (upstream) fluid. The Pu that needs to be used in
equation (7) is therefore

Pu(�; �) ¼ Pu(�̃; �̃)
d�̃

d�
¼ Pu(�̃; �̃)

1� u2
rel

(1� urel�)
2

� �
:

The solution for the slope s of the spectrum is found by solving
equation (6). In general, this equation has no solution except for
one value of s. Finding this value provides not only the slope of
the spectrum but also the angular distribution function g (�).

2.1. The Special Case of Isotropic Scattering

No assumption has been introduced so far about the scattering
processes that determine the motion of the particles in the up-
stream and downstream plasmas, with the exception of the axial
symmetry of the function W (�; �0; �; �0). A special case of this
symmetric situation is that of isotropic scattering, which takes
place when the scattering probabilityW only depends on the de-
flection angle�, which is related to the initial and final directions
through

cos� � ��0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

p
cos (�� �0): ð8Þ

Among the many functional forms that correspond physically
to isotropic scattering, the simplest one is

W (�; �0; �; �0) ¼ W (cos�) ¼ 1

	
e� 1�cos �ð Þ=	; ð9Þ

where 	 is the mean scattering angle. Integration of equation (9)
over �� �0 leads to

w(�; �0) ¼ 1

	
e� 1��� 0ð Þ=	I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

p
	

 !
; ð10Þ

where I0(x) is the Bessel function of order 0. Equation (9), first
introduced in Blasi & Vietri (2005), naturally satisfies the re-

quirement of being symmetric under rotations around the normal
to the shock surface. In the limit 	T1, this function becomes a
Dirac delta function, strongly peaked around the forward di-
rection, corresponding to isotropic small pitch angle scattering
(SPAS). For the opposite limit, that is 	31, w becomes flat and
corresponds to the case of isotropic large angle scattering (LAS).
In x 4.1 we modify this functional form to introduce the possi-
bility of anisotropic scattering.

3. DEFLECTION BY A REGULAR MAGNETIC FIELD
IN THE UPSTREAM REGION

It is well known that particle acceleration at a shock front with
a parallel magnetic field without scattering centers does not work.
This magnetic scattering may be self-generated by the same par-
ticles, but the process of generation depends on the conditions in
specific astrophysical environments. The case in which a regular
magnetic field not parallel to the shock normal is present in the
upstream fluid is quite interesting in that it allows for the return of
the particles to the shock front even in the absence of scattering.
In this section we investigate in detail the process of acceleration
at shocks with arbitrary velocity when only a regular large-scale
magnetic field is present upstream (no scattering). We assume
that enough turbulence is instead present in the downstream plasma
to guarantee magnetic scattering of the particles.

There are two main differences introduced by this situation
when compared with the standard case considered in x 2:
Particle motion in the upstream region is deterministic.—The

stochasticity introduced by the interactionwith scattering centers
is assumed to be absent. This requires a new determination of
the return probability Pu introduced above.
The presence of regular magnetic field with arbitrary orien-

tation breaks the axial symmetry around the shock normal.—
This, in principle, would force us to treat the problem in the four
angular variables �0, �0, �, and �.

In the following sections we show how addressing the first point
in fact solves the second point as well.

3.1. Upstream Return Probability

Let us consider a particle entering upstream in the direction
identified by the two angles �0 and �0 and returning to the shock
along the direction identified by � and �. Since the motion of the
particle is deterministic, the return direction is completely defined
by the incoming coordinates, and we can write in full generality

Pu(�0; �0;�; �) ¼ (2�)�1
 �� �1(�0; �0)ð Þ
; 
 �� �1(�0; �0)ð Þ; ð11Þ

where �1 and �1 are obtained from the solution of the equation
of motion, as discussed below. One can see that Pu is effectively
a function of only two variables.

In order to apply the same mathematical procedure intro-
duced in x 2, we need to write Pu as a function of azimuthal an-
gles only. Therefore, we use the properties of the delta function
in 
(�� �1(�0; �0)) to write

Pu �0; �0;�; �ð Þ ¼ 1

2�

@�0(�0; �)

@�

����
����
 �0 � �̄0

	 


 �� �1ð Þ

� Pu(�0; �) 
 �0 � �̄0

	 


 �� �1ð Þ: ð12Þ

We now show that Pu(�0; �), as defined by equation (12), is
exactly the function to be used in equation (7). This is easily shown
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by writing the fluxes of particles ingoing to and outgoing from
the upstream plasma,

Jþ(�; �) ¼
Z �u

�1

d�0
Z 2�

0

d�0Pu(�
0; �0; �; �)J�(�

0; �0); ð13Þ

which, when integrated over �, yields

Jþ(�) �
Z

d� Jþ(�; �) ¼
Z �u

�1

d�0 Pu(�
0; �)J�(�

0); ð14Þ

where we assumed that J� is independent of �. This is exactly
the same relationship as was used in Vietri (2003) and proves
our point that the system may, on average, still be treated as if
it were symmetric about the shock normal.

The key assumption here is that the flux crossing back into the
upstream region from the downstream one, J�, be independent
of the azimuthal angle �. This is of course true in the Newtonian
regime, because there the residence time for all particles diverges,
and there is time for deflections to effectively erase anisotropies in
the �-direction. But this must be true a fortiori in the relativistic
regime, when one considers that the properties of scattering are
of course still the same as in the Newtonian regime, while the
surface to be recrossed, i.e., the shock, is running away from the
particles at a speed that becomes, asymptotically, a fair fraction
of the particles’ speed. So, while not exactly true, the indepen-
dence of J� from � is at least a good approximation.

In order to write Pu(�0; �) in a more explicit way, we need to
solve the equation of motion of the particles, namely, find the
direction in which the particles recross the shock front as a func-
tion of the incoming direction. Particles move following a heli-
coidal trajectory around the magnetic field direction, indicated
here as z̃. The problem is simplest if expressed in the frame Õ co-
moving with the upstream fluid but with the polar axis coincident

with z̃.Wemarkwith a tilde all quantities expressed in this frame.
The equations of motion in the frame Õ are

�̃(t) ¼ �̃0; ð15Þ
�̃(t) ¼ �̃0 þ !t; ð16Þ

where t is time and ! is the Larmor frequency. The particles
recross the shock when zparticle(t) ¼ zshock(t). This condition ex-
pressed in the frame Õ reads

sin !t þ �̃0

	 

� sin �̃0 ¼

�̃0 cos � þ �s

sin � sin �̃0
!t; ð17Þ

where � is the angle between the shock normal z and the mag-
netic field direction z̃. The solution of equation (17) gives the up-
stream residence time t� of the particles, which is to be evaluated
numerically.
The angles that identify the recrossing direction, as functions

of the residence time, are

�̃1 ¼ �̃0; ð18Þ
�̃1 ¼ �̃0 þ !t� �̃0; �̃0

	 

: ð19Þ

A rotation by the angle � provides us with the recrossing coor-
dinates �1 and �1 in the fluid frame. At this point, the Jacobian in
equation (12) can be calculated, although some care is needed
because this Jacobian is not a single valued function; for each
pair (�0; �), the Jacobian has two values. This degeneracy arises
because of the substitution of �0 with �, since each � corre-
sponds in general to two possible values of �0. This is clear from
Figure 1, where we show some examples of solutions; the direc-
tions of entrance and escape from the upstream fluid are plotted
for different values of the shock speed and for different orienta-
tions of the large-scale magnetic field.

Fig. 1.—Location of the particles entering the upstream region (dashed lines) and returning to the downstream region (solid lines) after being deflected by themagnetic
field upstream. The directions are plotted in the plane�s�p; x-�s�p; y, where�p; x and �p; y are the components of the particle velocity along the x- and the y-axis, respectively.
The origin corresponds to particles entering along the shock normal. Circles correspond to particles having constant �0. The top row refers to�s�s ¼ 0:04. The bottom row
refers to �s�s ¼ 1:0. In both cases we show the effects of three different orientations of the magnetic field ( from left to right: cos � ¼ 0:0, 0.4, and 0.8). The presence of
an empty region when cos � > �s is due to particle leakage from upstream. (Compare with Fig. 1 in Achterberg et al. [2001].)
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Equation (17) admits a solution t� > 0 only if the two follow-
ing conditions are fulfilled.

1. The initial velocity of a particle along the shock normal
must be larger than the shock speed (otherwise the particle is pre-
vented from crossing the shock to start with). This implies

�0 < ��s: ð20Þ

2. The particle velocity along the shock normal has to be less
than the shock speed, namely,

�̃0 cos � > ��s: ð21Þ

Particles not satisfying this last condition escape the shock
region toward upstream infinity, a situation that is not realized in
the case of scattering considered in x 2. This escape process oc-
curs only for cos � > ��s and results in the loss of particles hav-
ing the entrance pitch angles cosine exceeding �min(�0; �0). In
fact for cos � < ��s, �min ¼ const ¼ �1 and all particles even-
tually recross the shock.When the particles are allowed to escape
upstream, the acceleration is clearly expected to become less
efficient and give rise to softer spectra of the accelerated particles
(see x 3.2).

Putting together all of the above, we can finally write the up-
stream conditional probability as

Pu �0; �ð Þ ¼ 1

2�

X
i¼1;2

@�0

@�

����
����
i

�(��0 � �s) �(�0 � �min(�0; �));

ð22Þ

where the sum is extended over the two branches of the Jacobian.
For cos � < ��s, the particles always return to the shock front,

and this forces the return probability to be unity when integrated
over all outgoing directions,Z 1

�u

d�Pu(�0; �) ¼ 1: ð23Þ

This integral condition is trivially satisfied by equation (22) and
is used as a check for Pu after its numerical computation.

Figures 2, 3, and 4 show some examples of our calculations
of Pu(�0; �) as a function of � for different values of �0, for a
Newtonian, a transrelativistic, and a relativistic shock, respec-
tively. For each case we show the results for different inclinations
of the magnetic field with respect to the shock normal. It is worth
noticing that Pu does not change significantly when the inclina-
tion of the magnetic field varies in the range 0 < cos � < �s at a
given shock speed. Therefore, we do not expect a significant var-
iation of the spectral slope in this range. In x 3.2we show that this
is in fact the case.

3.2. Spectrum and Anisotropy of the Accelerated Particles
for a Large-Scale Magnetic Field Upstream

In this section we use equations (6) and (7) to calculate the
spectrum and angular distribution of the accelerated particles at
the shock front. The return probabilities are calculated assuming
that in the downstream fluid there is isotropic scattering, so that
Pd can be calculated from equation (4) using equation (10) as a
scattering function. We assume 	 ¼ 0:01 for the SPAS regime
and 	 ¼ 10 for the LAS regime. In the upstream fluid we assume
that particles can only be deflected by a large-scale coherent
magnetic field with arbitrary orientation with respect to the nor-
mal to the shock front. The return probability Pu is therefore cal-
culated as discussed in detail in x 3.1.

The only information still lacking to proceed further is an
equation of state for the medium that would allow us to compute
the velocity of the downstream fluid from the jump conditions at
the shock front (see, e.g., Gallant 2002). We assume that the gas
upstream has zero pressure. Moreover, in the following we as-
sume everywhere that the magnetic field has no dynamical role,
so that the standard jump conditions for an unmagnetized shock
can be adopted (the role of the magnetic field becomes important
when the magnetic energy density becomes comparable with the
thermal energy density [Kirk & Duffy 1999]).

Followingmuch of the previous literature, we adopt the Synge
equation of state for the downstream gas (Synge 1957), assum-
ing that only protons contribute. Although used widely, this
assumption may not be well justified in a general case. We will
illustrate our conclusions on the role of the equation of state for

Fig. 2.—Conditional probabilityPu(�0; �) as a function of the outgoing direction �, for a fixed value of the shock speed (�s�s ¼ 0:04) with three different inclinations
of the magnetic field (cos � ¼ 0:0, 0.4, and 0.9). For each plot the different lines correspond to different values of the ingoing direction �0.

Fig. 3.—Same as Fig. 2, but for a transrelativistic shock (�s�s ¼ 1:0, �s ¼ 0:707).
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the spectrum and anisotropy of the accelerated particles in a
separate paper.

Within this set of assumptions, it is worth reminding that the
compression ratio uup /udown tends asymptotically to 4 for a non-
relativistic shock (even for shock speeds that are known to give
lower compression factors) and to 3 for ultrarelativistic shocks.

The simplest case to consider is that of a shock in which the
large-scale coherent magnetic field in the upstream region is par-
allel to the shock front (cos � ¼ 0). This is known as a perpendic-
ular shock. The angular distribution and the slope of the spectrum
of the accelerated particles are plotted in Figure 5 (the LAS
[SPAS] case is shown in the left [right] panel) and Figure 6,
respectively, for various shock velocities ranging fromNewtonian
to relativistic.

The angular distribution of the particles in the downstream
frame is seen to be rather anisotropic for the SPAS case, even in
the Newtonian regime. LAS is evidently more efficient in iso-
tropizing the accelerated particles. The anisotropies do not seem
to affect the spectrum of the accelerated particles in the case of
nonrelativistic shocks: the slope of the spectrum for both SPAS
and LAS is 4:000� 0:001. The effect becomes more prominent
for faster shocks and in particular for relativistic shocks. In the
SPAS case, for�s�s ¼ 10we found s ¼ 4:272� 0:001, compat-
ible with s ¼ 4:28� 0:01, obtained by Achterberg et al. (2001)
for �s ¼ 10 with a Monte Carlo simulation.

In Figure 6, the dotted and dashed lines refer to the SPAS and
LAS cases, respectively. At first glance, it may appear rather
surprising that in the limit of relativistic shocks the spectrum of
accelerated particles is softer in the LAS regime than it is in the

SPAS regime, since LAS is envisioned as more efficient in
redirecting the particles to the shock front. This intuitive vision
turns out to be incorrect, as also shown in Table 1, where we list
the slope, the average energy gain, and the return probability
from downstream (as defined in eqs. [26] and [29]) for a relativ-
istic shock with �s�s ¼ 5:0.
One can see that while the average energy gain is similar in the

two cases, the return probability in the case of LAS is 20% lower
than for the SPAS case. Qualitatively this can be understood as
follows. When the shock velocity increases, particles are caught
up to by the shock front when they have traveled only a small
fraction (of order 1/�s) of their gyration. Once downstream, LAS
is likely to swing them far from the shock front in a few interac-
tions, while SPAS deflects their trajectories rather slowly, yet
they remain in the vicinity of the shock surface. This is respon-
sible for the 20% difference in the average return probabilities in
the two cases. This is also shown in Figure 7, where we plot the
particle flux J (�) � j�þ udjg(�) in terms of downstream coor-
dinates. The total flux of particles entering the downstream sec-
tion (�ud < � < 1) is normalized to unity. It is clear from Figure 7
that the flux of particles returning to the shock is slightly larger
for the case of SPAS (dashed line in the range �1 < � < �ud).
A more interesting question concerns the effect of the orienta-

tion of the large-scale magnetic fieldwith respect to the normal to
the shock. We have already emphasized that for any orientation
different from that of a perpendicular shock, and in the absence
of scattering processes upstream, particles are lost from the up-
stream region, because the shock cannot catch up with their mo-
tion. This happens when cos � > ��s, so that the phenomenon

Fig. 4.—Same as Fig. 2, but for a relativistic shock ( �s�s ¼ 5:0, �s ¼ 0:98). The three plots are very similar to each other because the condition cos � > �s is never
reached.

Fig. 5.—Particle distribution function at the shock front when a large-scale coherent magnetic field is present in the upstream region, with a direction parallel to the
shock plane. In the downstream region particles are scattered in the LAS (left) or in the SPAS regime [right; here the maximum of g (�) is arbitrarily set equal to 1]. Several
values of shock speeds are shown. The particle distribution functions always show a jump at� ¼ ��s. Large angle scatteringmakes distribution functions flatter compared
with the small angle scattering case for �1 < � < �ud.
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is increasingly more important for shocks approaching the par-
allel configuration. This is reflected in increasingly softer spectra.
In the limit cos � ! 1, all particles escape from the upstream re-
gion, and no acceleration takes place.

The slope of the spectrum as obtained from our calculations is
plotted in Figure 8 (solid lines and symbols) as a function of
cos � for three different shock speeds (�s�s ¼ 0:6, 1.0, and 2.0).
When there is no particle escape, the slope s is actually a constant,
while it increases dramatically (and in fact diverges, showing
the disappearance of the acceleration process) for values of
cos � larger than��s. In Figure 8 (inset) we also plot the return
probability from upstream. For very inclined shocks the return
probability is still very close to unity, as in the case of upstream
scattering, but it drops rapidly for increasingly less inclined
shocks.

The steepening of the spectrum due to leakage of the particles
toward upstream infinity can also be understood in terms of a
Bell-like (Bell 1978) calculation, when carried out for the case of
a large-scale coherent magnetic field. The slope of the spectrum
is related to the average return probability and the average energy
gain of the particles per cycle back and forth through the shock
front through the expression

s ¼ 3� log hPreti
log hGi ; ð24Þ

where hGi is the mean amplification in a single cycle
(downstream! upstream! downstream) and hPreti is the mean
probability of returning to the shock. One should keep in mind
that Bell’s method, as expressed through the equation above, is
flawed in that it does not take into proper consideration the cor-
relation between the amplification factor and the return proba-
bility. Moreover, equation (24) hides the assumption of isotropy

of the distribution function of the accelerated particles, since that
formula was conceived in a discussion of nonrelativistic shocks
(Peacock [1981] introduced this formalism for particle acceler-
ation at relativistic shock fronts). All these limitations become of
particular importance for relativistic shocks. A general expres-
sion for the slope was found in Vietri (2003) and reads

hPretihGs�3i ¼ 1: ð25Þ

In the following we use equation (24), since we only want to
provide the reader with an argument of plausibility for the steep-
ening of the spectra in those cases in which particle leakage can
take place in the upstream region. In order to account for this
leakage, which cannot take place in the standard scenario of
diffusive particle acceleration at a shock front, we generalize
equation (24) in order to include the probability of escape from
the acceleration box from upstream. This is easily achieved by

TABLE 1

Exact Spectral Slope, Mean Amplification,

and Downstream Return Probability for �s�s ¼ 5:0

Regime Slope hGi hP(down)
ret i

SPAS .................... 4:218� 0:001 2.0387 0.4165

LAS...................... 4:445� 0:001 2.0753 0.3430

Note.—Values are as defined in eqs. (26) and (29).

Fig. 8.—Spectral slope as a function of cos � for three different values of the
shock speed. The dashed lines show the spectral slope computed with Bell’s
method. Inset: Corresponding upstream return probabilities.

Fig. 7.—Particle flux J (�) � j�þ ud jg (�) across the shock front, as it ap-
pears in the downstream frame, when the upstreammagnetic field is parallel to the
shock (cos � ¼ 0) and the downstream fluid is in the LAS regime (solid line) or
SPAS regime (dashed line). The shock speed is �s�s ¼ 5:0. The flux entering
downstream (i.e., for �ud < � < 1) is normalized to 1. In this way we see that
downstream return probability, i.e., the integrated flux for �1 < � < �ud, is
larger when the downstream region is in the SPAS regime.

Fig. 6.—Spectral index vs. shock speed for the same configuration as in Fig. 5.
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replacing hPreti with hP(up)
ret ihP

(down)
ret i. These mean values ex-

pressed in the downstream frame are

P
(down)
ret

D E
¼
R�ud
�1

d�0

R 1
�ud

d� g (�)(ud þ �)Pd(�; �0)R 1
�ud

d� g(�)(ud þ �)
; ð26Þ

P
(up)
ret

D E
¼
R 1
�ud

d�
R�ud
�1

d�0 g(�0)(ud þ �0)Pu(�0; �)R�ud
�1

d�0 g(�0)(ud þ �0)
: ð27Þ

In the last equation Pu also has to be computed in terms of quan-
tities evaluated in the downstream frame. Energy amplification
for a particle entering the upstream region with direction �0 (as
measured downstream) and returning with direction � is obtained
by combining two Lorentz transformations,

G(�0; �) ¼ � 2
rel(1� urel�0) 1þ urel�̄ð Þ; ð28Þ

where �̄ ¼ (�þ urel)/(1þ urel�) is the returning direction as
seen in the upstream frame. Averaging the amplification, we
have

hGi ¼
R�u

�1
d�0 g (�0)(uþ �0)

R 1
�u

d�G(�0; �)Pu(�0; �)R�u

�1
d�0 g(�0)(uþ �0)

R 1
�u

d�Pu(�0; �)
: ð29Þ

The spectral slope as computed through equation (24) is plotted
in Figure 8 (main panel ) with dashed lines; the corresponding
upstream return probability hP(up)

ret i is plotted in the inset (dashed
lines). The agreement with our exact results is better than 1%,
proving that the reason for the softening of the spectra of accel-
erated particles is in the increased probability that the particles
leave the acceleration region when only a large-scale coherent
magnetic field is present upstream.
The results discussed above apply to situations in which the

magnetic field in the upstream region can be considered as coher-
ent on spatial scales exceeding the size of the acceleration box.

Fig. 9.—Pictorial representation of the four patterns of anisotropic scattering considered in our calculations.

Fig. 10.—Anisotropic scattering functionswþ(�; �0) (left) andw�(�; �0) (right) as functions of � and for different values of the incoming direction �0 are shown by
the thick lines. The anisotropy factor is a ¼ 10 and 	0 ¼ 0:05. For comparison the isotropic scattering function (eq. [10]) is shownwith thin lines and for the same values
of �0.
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If the coherence scale of the field is smaller than the size of the
accelerator, then the direction of the particles suffer a random
wandering motion and one can think of this structured field as the
source of diffusion and as a physical mechanism that imposes a
maximum energy to the accelerated particles (at least in the ab-
sence of radiative energy losses). Particles that escape from the
shock region too fast (highest energy ones) have enough time
to feel the effect of a coherent scale, while lower energy particles
live in the accelerator for longer times and in principle may feel
different orientations of the upstream magnetic field. This sce-
nario is basically equivalent to having some degree of scattering
upstream and should be treated with the formalism already dis-
cussed in Vietri (2003) and Blasi & Vietri (2005). As soon as a
phenomenon equivalent to scattering is present, the probability
of escape to upstream infinity vanishes for all those particles that
are confined in the accelerator for sufficiently long times. More-
over, one should keep in mind that even if a large-scale coherent
magnetic field is present to start with, the propagation of the ac-
celerated (charged) particles in the upstream plasma is very likely
to excite fluctuations in the magnetic field structure through
streaming instability (Bell 1978). These fluctuations act as scatter-
ing centers and enhance the probability of returning to the shock
front.

4. ANISOTROPIC SCATTERING

In this section we consider again the standard case in which
particle motion in both the upstream and downstream fluids is
diffusive due to the presence of scattering agents. However, we
include the possibility that the scattering, although spatially con-
stant, may be anisotropic. The physical motivation for this gen-
eralization is the following: in a background of Alfvèn waves
with a power spectrum PW (k) [such that PW (k) dk is the energy
density in the form of waves with wavenumber in the range dk

around k], the particles suffer angular diffusion with a diffusion
coefficient

D�� ¼
����

�t

� �
� �

k r PW (kr)

B2
0 =8�

; ð30Þ

where kr ¼ �/v� is the resonant wavenumber and � is the gyra-
tion frequency of particles with momentum p in the background
magnetic fieldB0. One can clearly see from equation (30) that the
diffusion is anisotropic in general, unless the power spectrum
has a specific ad hoc form. One should keep in mind that equa-
tion (30) is obtained in the context of quasi-linear theory. A full
nonlinear treatment might show how the turbulence is distrib-
uted and which is the resulting particle angular distribution.

In the calculations that follow, we quantify the effects of an-
isotropic scattering on the spectrum and angular distribution of
the accelerated particles. The calculation of specific patterns of
anisotropy in the scattering agents is beyond the scope of this pa-
per; therefore, we adopt a few simple but physically meaningful
toy models of anisotropic scattering, and we carry out the calcu-
lations within those models.

4.1. Modeling Anisotropy

We parameterize the anisotropy in such a way so as to re-
produce the following four patterns:

Case A.—Particles are scattered per unit length more efficiently
while they move away from the shock front than they are on their
way to the shock front, both upstream and downstream.
Case B (opposite of case A).—Particles are scattered per unit

length more efficiently on their way to the shock front than they
are while they move away from the shock front, both upstream
and downstream.
CaseC.—In the downstreamfluid, particles are scattered per unit

length more efficiently while they move away from the shock
front (� ! 1) than they are on their way to the shock front
(� ! �1). In the upstream fluid the situation is reversed, and
scattering is more efficient for the particles that are moving to-
ward the shock (� ! 1).
Case D (opposite of C ).—Scattering is more effective around

� ��1 both upstream and downstream.

A pictorial representation of cases AYD is shown in Figure 9.

TABLE 2

Summary of Mean Scattering Angle Used

in the Different Scenarios of Figure 9

Location A B C D

Upstream .................... 	þ 	� 	� 	þ
Downstream ............... 	� 	þ 	� 	þ

Fig. 11.—Particle distribution function at the shock front for anisotropic scattering of typeA (left) andB (right), both with a ¼ 10. Each line represents a different shock
speed as the labels show.
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In order to simulate cases AYD above, we adopt a scattering
function similar to equation (10), but modified to introduce an-
isotropic scattering. In particular, to achieve this goal we allow
the width 	 of the scattering function to depend on both the initial
and final directions �0 and �, so that

w(�; �0) ¼ 1

	(�; �0)
e� 1��� 0ð Þ=	(�;� 0)½ �

; I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

p
	(�; �0)

 !
: ð31Þ

It is worth stressing that the scattering function has to be sym-
metric if we exchange �with �0, as a consequence of Liouville’s
theorem, so we are forced to look for a symmetric function
	(�; �0). In order to apply the functional form of equation (31)
to cases AYD, it is sufficient to adopt the following expression
for the mean scattering angle 	(�; �0),

	�(�; �
0) ¼ 	0 1� (a� 1)

4a
(�� 1)(�0 � 1)

� �
: ð32Þ

Both 	þ and 	� have 	0 as the maximum and 	0 /a as the
minimum value. For this reason we refer to a as the ‘‘anisotropy
factor.’’ For a ¼ 1 isotropic scattering is recovered.

The resulting scattering functionw�(�; �
0), obtained by substi-

tuting equation (32) into equation (31), is plotted in Figure 10 to-

gether with the isotropic scattering function (eq. [10]), for 	0 ¼
0:05 and a ¼ 10. These plots clarify how wþ and w� can sim-
ulate a scattering more efficient in the � ¼ 1 and �1 directions,
respectively.
The condition

R 1
�1

d�w(�; �0) ¼ 1, which states the probabil-
ity conservation, is fulfilled by equation (31) provided 	0T1.
In the numerical calculations that follow, we assume 	0 ¼ 0:05.
Using 	� and 	þ in different combinations for the upstream

and the downstream fluids, we can reproduce scenarios A, B, C,
and D, as summarized in Table 2.

4.2. Results: Anisotropic Scattering for Shocks
of Arbitrary Speed and Fixed Anisotropy Factor

Following the procedure outlined in x 2 and making use of
equations (31) and (32), we compute the spectral index and the
angular distribution for scenarios A, B, C, andD described above.
In each case, both the parameter 	0 and the anisotropy factor a are
fixed (	0 ¼ 0:05 and a ¼ 10), while the shock velocity is allowed
to vary within the range 0:04 	 �s�s 	 5.
The angular part of the distribution function is shown in Fig-

ure 11 for scenarios A (left) and B (right) and in Figure 12 for
scenarios C (left) and D (right). The slope of the spectrum of ac-
celerated particles is plotted in Figure 13. For relativistic shocks,
the spread in the slope of the spectrum of accelerated particles
has less spread around�4, although in general it remains true that
harder spectra are obtained in scenarios B and D.

Fig. 12.—Same as Fig. 11, but for anisotropic scattering of type C (left) and D (right).

Fig. 13.—Slope vs. shock speed in the four different anisotropic scattering scenarios: A and B in the left panel, C and D in the right one. All plots are obtained with
a ¼ 10 and 	0 ¼ 0:05. Slope resulting from isotropic scattering (computed with 	 ¼ 0:01) is also shown for comparison (solid lines).
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A note of caution is necessary to interpret the apparent peak
in the slopes at �s�s � 1 for case A and at �s�s � 3 for case D.
These peaks are completely unrelated to anisotropic scattering
and are instead the result of the breaking of the regime of small
pitch angle scattering (or SPAS), as was already pointed out in
Blasi & Vietri (2005). The acceleration process no longer takes
place in the SPAS regimewhen�2

s k1/4	, which happens at higher
Lorentz factor when 	 is smaller. This is shown in Figure 14,
where we plot the slope for the case of isotropic SPAS for 	 ¼ 0:1
(dashed line) and 	 ¼ 0:01 (solid line) and the corresponding
angular distribution for �s�s ¼ 5. As already found in Blasi &
Vietri (2005), the transition from SPAS to LAS is generally ac-
companied by a hardening of the spectra of accelerated particles.
The peak seen in Figure 13 is simply the consequence of an ef-
fective value of 	 in the anisotropic scattering cases A and D.
This is also clear comparing angular distributions of Figure 14
with the angular distribution of cases A and D for �s�s ¼ 4 and
5; the curves show the same behavior with a jump at � ¼ ��down

and a peak that moves toward � ¼ 1 as the shock speed increase.

5. CONCLUSIONS AND DISCUSSION

In this paper we carried out exact calculations of the angular
distribution function and spectral slope of the particles acceler-
ated at plane shock fronts moving with arbitrary velocity, gener-
alizing a method previously described in detail in Vietri (2003)
and Blasi & Vietri (2005). In particular, we specialized our cal-
culations to two situations: (1) the presence of a large-scale co-
herent magnetic field of arbitrary orientation with respect to the
shock normal, in the upstream fluid, and (2) the possibility of
anisotropic scattering in the upstream and downstream plasmas.

Our calculations allowed us to describe the importance of the
inclination of the magnetic field when this has a large coherence
length and there are no scattering agents upstream. ForNewtonian
shocks, only quasi-perpendicular fields (namely, perpendicular to
the shock normal) are of practical importance, in that the return
of particles to the shock from the upstream section is warranted.
Quasi-parallel shocks imply a very low probability of return, so
that the spectrum of accelerated particles is extremely soft. The
process of acceleration eventually shuts off for parallel shocks.
For relativistic shocks, the situation is less pessimistic, because the
accelerated particles and the shock front move with comparable
velocities in the upstream frame. In general, the acceleration
stops being efficient when the cosine of the inclination angle� of
the magnetic field with respect to the shock normal is comparable

with the shock speed in units of the speed of light. The slope of the
spectrumof accelerated particles for cos � ¼ 0 as a function of the
shock velocity is plotted in Figure 6 for the two cases in which
SPAS or LAS is operating in the downstream plasma. The slope
as a function of cos � ¼ 0 for shocks moving at different speeds
is shown in Figure 8. In the same figure we also show the return
probability from the upstream section in order to emphasize that
the presence of a large-scale magnetic field upstream leads to par-
ticle leakage to upstream infinity. This latter phenomenon disap-
pears when scattering is present, in that scattering always allows
for the shock to reach the accelerated particles. In this case, the
probability of returning to the shock at an arbitrary direction is
unity. One can ask when and how the transition from a situation
in which there is no scattering to one in which scattering is at
work takes place.When some scattering is present but the energy
density in the scattering agents (e.g., Alfvèn waves) is very low
compared with the energy density in the background magnetic
field, only very low energy particles are effectively scattered.When
their energy becomes large enough, they only feel the presence
of the coherent field. Increasing the amount of scattering, this tran-
sition energy becomes gradually higher. Particles whose Larmor
radius is larger than the coherence scale of the magnetic field can
eventually escape the accelerator. In general, the level of turbu-
lence (and therefore of scattering) and the number of accelerated
particles are not independent, since the turbulence may be self-
generated through streaminglike instabilities Bell (1978).

In x 4 we extended our analysis to the very interesting case of
anisotropic scattering in both the upstream (unshocked) and down-
stream (shocked) medium. The pattern of anisotropy, which clearly
depends on the details of the formation and development of the
scattering centers, has been parameterized in four different sce-
narios, and for each one we calculated the angular part of the dis-
tribution function and the spectrum of the accelerated particles.
Deviations from the predictions obtained in the context of iso-
tropic SPAS and LAS have been quantified; the typical magni-
tude of these deflections is a few percent, but there are situations
in which the deviation is more interesting, in particular, because it
goes in the direction of making spectra harder.

This research was partially funded through grant COFIN 2004-
2005. P. B. is grateful to the KIPAC at SLAC/Stanford for hos-
pitality during the final stages of preparation of the manuscript.

Fig. 14.—Breaking of the SPAS approximation. Left: Slope of the spectrum of accelerated particles in the case of isotropic scattering with 	 ¼ 0:01 (solid line) and
	 ¼ 0:1 (dashed line). Right: Angular distribution for �s�s ¼ 5 with 	 ¼ 0:01 (solid line) and 	 ¼ 0:1 (dashed line).
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