4 research outputs found

    Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol

    Get PDF
    Bacterial strains that were genetically blocked in important metabolic pathways and grown under selective conditions underwent a process of adaptive evolution: certain pathways may have been deregulated and therefore allowed for the circumvention of the given block. A block of endogenous pyruvate synthesis from glycerol was realized by a knockout of pyruvate kinase and phosphoenolpyruvate carboxylase in E. coli. The resulting mutant strain was able to grow on a medium containing glycerol and lactate, which served as an exogenous pyruvate source. Heterologous expression of a pyruvate carboxylase gene from Corynebacterium glutamicum was used for anaplerosis of the TCA cycle. Selective conditions were controlled in a continuous culture with limited lactate feed and an excess of glycerol feed. After 200–300 generations pyruvate-prototrophic mutants were isolated. The genomic analysis of an evolved strain revealed that the genotypic basis for the regained pyruvate-prototrophy was not obvious. A constraint-based model of the metabolism was employed to compute all possible detours around the given metabolic block by solving a hierarchy of linear programming problems. The regulatory network was expected to be responsible for the adaptation process. Hence, a Boolean model of the transcription factor network was connected to the metabolic model. Our model analysis only showed a marginal impact of transcriptional control on the biomass yield on substrate which is a key variable in the selection process. In our experiment, microarray analysis confirmed that transcriptional control probably played a minor role in the deregulation of the alternative pathways for the circumvention of the block

    Subtelomere FISH in 50 children with mental retardation and minor anomalies, identified by a checklist, detects 10 rearrangements including a de novo balanced translocation of chromosomes 17p13.3 and 20q13.33

    No full text
    Submicroscopic or subtle aneusomies at the chromosome ends, typically diagnosed by subtelomere fluorescence in situ hybridization (FISH), are a significant cause of idiopathic mental retardation (MR). Some 20 subtelomere studies, including more than 2,500 subjects, have been reported. The studies are not directly comparable because different techniques and patient ascertainment criteria were used, but an analysis of 14 studies showed that aberrations were detected in 97 out of 1,718 patients (5.8%, range 2-29%; 95% confidence interval (CI) 4.60-6.84%). We performed a subtelomere FISH study of 50 unrelated children ascertained by a checklist that evaluates MR or developmental delay, dysmorphism, growth defect, and abnormal pedigree and found 10 bona fide causal rearrangements (detection rate 20%, 95% CI 10-33.7%). The findings included five unbalanced familial translocations or inversions, two unbalanced de novo translocations, and two de novo deletions. Patient 5 showed multiple anomalies (large head, vision defect, omphalocele, heart defect, enlarged kidneys, moderate MR, speech defect, mild transient homocysteinemia) and a de novo balanced translocation of chromosomes 17p13.3 and 20q13.33. The report of a subtelomeric balanced rearrangement associated with a disease phenotype is a novel one. FISH mapping using panels of overlapping BAC clones identified a number of candidate genes at or near his breakpoints, including ASPA, TRPV3, TRPV1, and CTNS at 17p13.3, and three genes of unknown function at 20q13.33. Only the homocysteinemia could be speculatively linked to one of these genes (CTNS, the gene for cystinosis). Three within the subset of 16 children (18.8%) with mild (IQ, 50-69) or unspecified degree of MR tested positive, suggesting that the checklist approach could be especially useful within this group of patients

    Synthesis and study of cytotoxic activity of 1,2,4-trioxane- and egonol-derived hybrid molecules against Plasmodium falciparum and multidrug-resistant human leukemia cells

    No full text
    WOS: 000333775600039PubMed ID: 24561670Malaria and cancer cause the death of millions of people every year. To combat these two diseases, it is important that new pharmaceutically active compounds have the ability to overcome multidrug resistance in cancer and Plasmodium falciparum strains. In search of effective anti-cancer and anti-malaria hybrids that possess improved properties compared to their parent compounds, a series of novel 1,2,4-trioxane-based hybrids incorporating egonol and/or ferrocene fragments were synthesized and tested in vitro against P. falciparum strains, CCRF CEM cells and the multidrug-resistant P-glycoprotein-over-expressing CEM/ADR5000 cells. The most active compounds against P. falciparum strains were artesunic acid homodimers 12 and 13 (IC50 of 0.32 and 0.30 nM, respectively), whereas novel hybrids 7 (1,2,4-trioxane ferrocene egonol), 9 (1,2,4-trioxane ferrocene) and 11 (artesunic acid egonol) showed a remarkable cytotoxicity toward CCRF CEM cells (IC50 of 0.07, 0.25 and 0.18 mu M, respectively). A cooperative and synergistic effect of the three moieties 1,2,4-trioxane, ferrocene and egonol in hybrid molecule 7 is significant and is obviously stronger than in hybrids 9 (1,2,4-trioxane ferrocene) and 11 (artesunic acid egonol), which comprises of only two of the three considered parent compounds. Interestingly, hybrid 9 containing a 1,2,4-trioxane and a ferrocene fragment has shown to be the most effective among the studied hybrids against the tested multidrug-resistant leukemia CEM/ADR5000 cells (IC50 of 0.57 mu M) and possesses a degree of cross-resistance of 2.34. (C) 2014 Elsevier Masson SAS. All rights reserved.Dr. Hertha & Helmut Schmauser-Stiftung; German Academic Exchange Service DAADDeutscher Akademischer Austausch Dienst (DAAD)We are grateful to the "Dr. Hertha & Helmut Schmauser-Stiftung" for research support. We thank Professor Andriy Mokhir for pointing out ferrocene-based anti-cancer agents. We thank Mr. Bhasem Gharib (University of Erlangen-Nuremberg, Germany) for the supply with ferrocene monocarboxylic acid and ferrocene dicarboxylic acid.; Financial support by the German Academic Exchange Service DAAD (doctoral research fellowship for Aysun capci Karagoz) is gratefully acknowledged
    corecore