230 research outputs found

    The infective cycle of Cabbage leaf curl virus (CaLCuV) is affected by CRUMPLED LEAF (CRL) gene in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Geminiviruses are single-stranded DNA viruses that cause serious crop losses worldwide. Successful infection by these pathogens depends extensively on virus-host intermolecular interactions that allow them to express their gene products, to replicate their genomes and to move to adjacent cells and throughout the plant.</p> <p>Results</p> <p>To identify host genes that show an altered regulation in response to <it>Cabbage leaf curl virus </it>(CaLCuV) infection, a screening of transposant <it>Arabidopsis thaliana </it>lines was carried out. Several genes were identified to be virus responsive and one, <it>Crumpled leaf </it>(<it>CRL) </it>gene, was selected for further characterization. <it>CRL </it>was previously reported by Asano et al., (2004) to affect the morphogenesis of all plant organs and the division of plastids. We report here that <it>CRL </it>expression, during CaLCuV infection, shows a short but strong induction at an early stage (3-5 days post inoculation, dpi). To study the role of <it>CRL </it>in CaLCuV infection, <it>CRL </it>over-expressing and silenced transgenic plants were generated. We compared the replication, movement and infectivity of CaLCuV in transgenic and wild type plants.</p> <p>Conclusion</p> <p>Our results showed that CRL over-expressing plants showed an increased susceptibility to CaLCuV infection (as compared to wt plants) whereas <it>CRL</it>-silenced plants, on the contrary, presented a reduced susceptibility to viral infection. The possible role of <it>CRL </it>in the CaLCuV infection cycle is discussed.</p

    CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana

    Get PDF
    Chromatin-remodeling factors regulate the establishment of transcriptional programs during plant development. Although 42 genes encoding members of the SWI2/SNF2 family have been identified in Arabidopsis thaliana, < 10 have been assigned a precise function on the basis of a mutant phenotype, and none have been shown to play a specific role during the gametophytic phase of the plant life cycle. A. thaliana chromatin-remodeling protein 11 (CHR11) encodes an imitation of switch (ISWI)-like chromatin-remodeling protein abundantly expressed during female gametogenesis and embryogenesis in Arabidopsis. To determine the function of CHR11 in wild-type plants, we introduced a hairpin construct leading to the production of double-stranded RNA, which specifically degraded the endogenous CHR11 mRNA by RNA interference (RNAi). Transcription of the RNAi-inducing hairpin RNA was driven by either a constitutive cauliflower mosaic virus 35S promoter (CaMV35S) acting at most stages of the sporophytic phase or a newly identified specific promoter acting at the onset of the female gametophytic phase (pFM1). All adult trans-formants that constitutively lacked sporophytic CHR11 activity showed reduced plant height and small cotyledonary embryos with limited cell expansion. In contrast, RNAi lines in which CHR11 was specifically silenced at the onset of female gametogenesis (megagametogenesis) had normal height and embryo size but had defective female gametophytes arrested before the completion of the mitotic haploid nuclear divisions. These results show that CHR11 is essential for haploid nuclear proliferation during megagametogenesis and cell expansion during the sporophytic phase, demonstrating the functional versatility of SW12/SNF2 chromatin-remodeling factors during both generations of the plant life cycle

    LAF1, a MYB transcription activator for phytochrome A signaling

    Get PDF
    The photoreceptor phytochrome (phy) A has a well-defined role in regulating gene expression in response to specific light signals. Here, we describe a new Arabidopsis mutant, laf1 (long after far-red light 1) that has an elongated hypocotyl specifically under far-red light. Gene expression studies showed that laf1 has reduced responsiveness to continuous far-red light but retains wild-type responses to other light wavelengths. As far-red light is only perceived by phyA, our results suggest that LAF1 is specifically involved in phyA signal transduction. Further analyses revealed that laf1 is affected in a subset of phyA-dependent responses and the phenotype is more severe at low far-red fluence rates. LAF1 encodes a nuclear protein with strong homology with the R2R3-MYB family of DNA-binding proteins. Experiments using yeast cells identified a transactivation domain in the C-terminal portion of the protein. LAF1 is constitutively targeted to the nucleus by signals in its N-terminal portion, and the full-length protein accumulates in distinct nuclear speckles. This accumulation in speckles is abolished by a point mutation in a lysine residue (K258R), which might serve as a modification site by a small ubiquitin-like protein (SUMO)

    A spatial dissection of the Arabidopsis floral transcriptome by MPSS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have further characterized floral organ-localized gene expression in the inflorescence of <it>Arabidopsis thaliana </it>by comparison of massively parallel signature sequencing (MPSS) data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated <it>Arabidopsis </it>genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, <it>apetala1, apetala3, agamous</it>, a <it>superman/apetala1 </it>double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens.</p> <p>Results</p> <p>By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, <it>in situ </it>hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns.</p> <p>Conclusion</p> <p>This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic regulatory networks governing floral development.</p

    Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage.</p> <p>Results</p> <p>To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20–454 pyrosequencing runs of a cDNA library obtained from 2 week-old <it>Palomero Toluqueño </it>maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20–454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20–454 sequences and corresponding levels of gene expression.</p> <p>Conclusion</p> <p>A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.</p

    Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA

    Get PDF
    The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples. We tested the performance of Agilent's SureSelect and Mycroarray's MySelect in-solution capture systems on Illumina sequencing libraries built from ancient maize to identify key factors influencing aDNA capture experiments. High levels of clonality as well as the presence of multiple-copy sequences in the capture targets led to biases in the data regardless of the capture method. Neither method consistently outperformed the other in terms of average target enrichment, and no obvious difference was observed either when two tiling designs were compared. In addition to demonstrating the plausibility of capturing aDNA from ancient plant material, our results also enable us to provide useful recommendations for those planning targeted-sequencing on aDNA

    REVOLUTA regulates meristem initiation at lateral positions

    Full text link
    While the shoot apical meristem (SAM) is indirectly responsible for the initiation of all above-ground postembryonic organs, in most plants the vast majority of these organs are directly initiated by lateral meristems. In Arabidopsis thaliana , the lateral meristems include flower meristems (FMs), which form on the flanks of the SAM, and lateral shoot meristems (LSMs), which develop in leaf axils. While significant progress has been made on the molecular genetic basis of SAM initiation during embryo development, relatively little is known about the initiation of meristems at lateral positions. Here we have characterized the phenotypic consequences and genetic interactions of mutations in the REVOLUTA ( REV ) gene, with an emphasis on the role of REV in lateral meristem initiation. Our observations indicate that REV is required for initiation of both LSMs and FMs, and likely acts in the same pathway as, and upstream of, known meristem regulators. We identified the REV gene and found it encodes a predicted homeodomain leucine zipper transcription factor that also contains a START sterol-lipid binding domain. REV is the same as the IFL gene. REV was expressed at the earliest stages of LSM and FM formation. Within the inflorescence shoot meristem, REV expression appeared to predict 3 5 incipient flower primordia on the flanks of the SAM, and REV expression at stage 1 and stage 2 matched that of WUS and STM , respectively. We propose that REV acts at lateral positions to activate the expression of known meristem regulators.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75526/1/j.1365-313X.2001.00959.x.pd

    Molecular Strategies for Gene Containment in Transgenic Crops

    Get PDF
    The potential of genetically modified (GM) crops to transfer foreign genes through pollen to related plant species has been cited as an environmental concern. Until more is known concerning the environmental impact of novel genes on indigenous crops and weeds, practical and regulatory considerations will likely require the adoption of gene-containment approaches for future generations of GM crops. Most molecular approaches with potential for controlling gene flow among crops and weeds have thus far focused on maternal inheritance, male sterility, and seed sterility. Several other containment strategies may also prove useful in restricting gene flow, including apomixis (vegetative propagation and asexual seed formation), cleistogamy (self-fertilization without opening of the flower), genome incompatibility, chemical induction/deletion of transgenes, fruit-specific excision of transgenes, and transgenic mitigation (transgenes that compromise fitness in the hybrid). As yet, however, no strategy has proved broadly applicable to all crop species, and a combination of approaches may prove most effective for engineering the next generation of GM crops

    TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana

    Get PDF
    Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis
    corecore