84 research outputs found

    Ligand signature in the membrane dynamics of single TrkA receptor molecules

    Get PDF
    The neurotrophin receptor TrkA (also known as NTRK1) is known to be crucially involved in several physio-pathological processes. However, a clear description of the early steps of ligand-induced TrkA responses at the cell plasma membrane is missing. We have exploited single particle tracking and TIRF microscopy to study TrkA membrane lateral mobility and changes of oligomerization state upon binding of diverse TrkA agonists (NGF, NGF R100E HSANV mutant, proNGF and NT-3). We show that, in the absence of ligands, most of the TrkA receptors are fast moving monomers characterized by an average diffusion coefficient of 0.47 μm^2/second; about 20% of TrkA molecules move at least an order of magnitude slower and around 4% are almost immobile within regions of about 0.6 mm diameter. Ligand binding results in increased slow and/or immobile populations over the fast one, slowing down of non-immobile trajectories and reduction of confinement areas, observations that are consistent with the formation of receptor dimeric and oligomeric states. We demonstrate that the extent of TrkA lateral mobility modification is strictly ligand dependent and that each ligand promotes distinct trajectory patterns of TrkA receptors at the cell membrane (ligand ‘fingerprinting’ effect). This ligand signature of receptor dynamics results from a differential combination of receptor-binding affinity, intracellular effectors recruited in the signalling platforms and formation of signalling and/or recycling endosome precursors. Thus, our data uncover a close correlation between the initial receptor membrane dynamics triggered upon binding and the specific biological outcomes induced by different ligands for the same receptor

    Food restriction enhances visual cortex plasticity in adulthood

    Get PDF
    Neural circuits display a heightened sensitivity to external stimuli during well-established windows in early postnatal life. After the end of these critical periods, brain plasticity dramatically wanes. The visual system is one of the paradigmatic models for studying experience-dependent plasticity. Here we show that food restriction can be used as a strategy to restore plasticity in the adult visual cortex of rats. A short period of food restriction in adulthood is able both to reinstate ocular dominance plasticity and promote recovery from amblyopia. These effects are accompanied by a reduction of intracortical inhibition without modulation of brain-derived neurotrophic factor expression or extracellular matrix structure. Our results suggest that food restriction could be investigated as a potential way of modulating plasticity

    IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

    Get PDF
    The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes

    Massage accelerates brain development and the maturation of visual function

    Get PDF
    Environmental enrichment (EE) was shown recently to accelerate brain development in rodents. Increased levels of maternal care, and particularly tactile stimulation through licking and grooming, may represent a key component in the early phases of EE. We hypothesized that enriching the environment in terms of body massage may thus accelerate brain development in infants. We explored the effects of body massage in preterm infants and found that massage accelerates the maturation of electroencephalographic activity and of visual function, in particular visual acuity. In massaged infants, we found higher levels of blood IGF-1. Massage accelerated the maturation of visual function also in rat pups and increased the level of IGF-1 in the cortex. Antagonizing IGF-1 action by means of systemic injections of the IGF-1 antagonist JB1 blocked the effects of massage in rat pups. These results demonstrate that massage has an influence on brain development and in particular on visual development and suggest that its effects are mediated by specific endogenous factors such as IGF-1

    Neurotrophic Activity and Its Modulation by Zinc Ion of a Dimeric Peptide Mimicking the Brain-Derived Neurotrophic Factor N-Terminal Region

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies

    Precursor and mature NGF live tracking: one versus many at a time in the axons

    Get PDF
    The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips

    Precursor and mature NGF live tracking: one versus many at a time in the axons

    Get PDF
    The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips

    Nationwide epidemiological study for estimating the effect of extreme outdoor temperature on occupational injuries in Italy.

    Get PDF
    BACKGROUND: Despite the relevance for occupational safety policies, the health effects of temperature on occupational injuries have been scarcely investigated. A nationwide epidemiological study was carried out to estimate the risk of injuries for workers exposed to extreme temperature and identify economic sectors and jobs most at risk. MATERIALS AND METHODS: The daily time series of work-related injuries in the industrial and services sector from the Italian national workers' compensation authority (INAIL) were collected for each of the 8090 Italian municipalities in the period 2006-2010. Daily air temperatures with a 1?×?1?km resolution derived from satellite land surface temperature data using mixed regression models were included. Distributed lag non-linear models (DLNM) were used to estimate the association between daily mean air temperature and injuries at municipal level. A meta-analysis was then carried out to retrieve national estimates. The relative risk (RR) and attributable cases of work-related injuries for an increase in mean temperature above the 75th percentile (heat) and for a decrease below the 25th percentile (cold) were estimated. Effect modification by gender, age, firm size, economic sector and job type were also assessed. RESULTS: The study considered 2,277,432 occupational injuries occurred in Italy in the period 2006-2010. There were significant effects for both heat and cold temperatures. The overall relative risks (RR) of occupational injury for heat and cold were 1.17 (95% CI: 1.14-1.21) and 1.23 (95% CI: 1.17-1.30), respectively. The number of occupational injuries attributable to temperatures above and below the thresholds was estimated to be 5211 per year. A higher risk of injury on hot days was found among males and young (age 15-34) workers occupied in small-medium size firms, while the opposite was observed on cold days. Construction workers showed the highest risk of injuries on hot days while fishing, transport, electricity, gas and water distribution workers did it on cold days. CONCLUSIONS: Prevention of the occupational exposure to extreme temperatures is a concern for occupational health and safety policies, and will become a critical issue in future years considering climate change. Epidemiological studies may help identify vulnerable jobs, activities and workers in order to define prevention plans and training to reduce occupational exposure to extreme temperature and the risk of work-related injuries

    Impact of different exposure models and spatial resolution on the long-term effects of air pollution.

    Get PDF
    Abstract Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The investigations have assessed exposure using various methods achieving different accuracy in predicting air pollutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic diameter less than 10 μm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory (RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level confounders. We found different distributions of both NO2 and PM10 concentrations, across models and spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 μg/m3 is used to calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for exposure assessment, and different spatial resolutions
    corecore