60 research outputs found

    Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    Get PDF
    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli

    Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    Get PDF
    Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable

    The angiotensin system elements in invertebrates

    No full text
    In this review, the different components of the renin-angiotensin system (RAS) in invertebrates are discussed. This system is implicated in osmoregulation, reproduction, memory processes and immune system regulation. As the elements of this hormone-enzymatic system also exist in invertebrates, it appears that the RAS originated very early in evolution. (C) 2001 Elsevier Science B V All rights reserved.status: publishe

    Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay.

    No full text
    A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates

    Cloning, expression and pharmacological characterization of a vasopressin-related receptor in an annelid, the leech Theromyzon tessulatum

    No full text
    International audienceIn annelids, it has been established that arginine-vasopressin (AVP)/oxytocin (OT) superfamily peptides are involved in the maintenance of water and electrolyte homeostasis as well as reproduction. At present, there is little information on their receptors. In this study, we report the characterization of a 1.7 kb cDNA for an AVP-related receptor from the leech Theromyzon tessulatum . The open reading frame encodes a 435-aminoacid transmembrane protein that displays seven segments of hydrophobic amino acids, typical of G-protein-coupled receptors. The overall predicted protein exhibits about 30% amino-acid identities to other invertebrate, as well as vertebrate, AVP/OT receptor family members, and displays conserved characteristic features belonging to the AVP/OT receptor superfamily. RT-PCR expression experiments showed that mRNA is expressed in the genital tract, the ovary and the brain. The receptor expression is stage specific, showing a weak expression after the two first blood meals, increasing dramatically after the last blood meal during the period of sexual maturation and disappearing after egg laying. Thus, the leech AVP-related receptor may mediate reproductive functions. When expressed in COS-7 cells, the receptor binds ligands with the following rank order of potency: AVP= Arg-vasotocin >Arg-conopressin >mesotocin = OT = Lys-conopressin=isotocin>annetocin. This shows an AVP-like pharmacological profile. The transfected receptor mediates AVP-induced accumulation of inositol phosphates, indicating that the leech AVP-related receptor is functional. This study describes the characterization of a novel AVP/OT superfamily receptor in annelids, which are considered the most distant group of coelomate metazoans possessing a functional AVP/OT-related endocrine system

    Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay

    No full text
    A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC50 of 19.8 mum. Interestingly, its cleavage product, IPEP exhibits an IC50 of 11.5 mum. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 mum IPEP and 35% inhibition with LORF (25 mM). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.status: publishe
    corecore