317 research outputs found

    Intrapatient variability of the pupillary pain index to remifentanil

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Downstream-migrating antidunes in sand, gravel and sand-gravel mixtures

    Get PDF
    River hydrodynamicsBed roughness and flow resistanc

    Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003-2012

    Get PDF
    Fog-water collection has been widely analysed for its quantification and potential uses; however, there are few studies assessing the synoptic conditions and largescale teleconnection patterns that affect its occurrence. Focusing on the Mediterranean Iberian Peninsula, this work aims to analyse the synoptic patterns, both at surface level and 850 hPa geopotential height, that most likely to favour fogwater collection, and to quantify the relationship between fog-water collection and the NAOi (North Atlantic Oscillation index), MOi (Mediterranean Oscillation index) as well as WeMOi (Western Mediterranean Oscillation index) teleconnection patterns. For this purpose, daily fog-water observations from a dense network of 23 fog-water collectors located along the Mediterranean Iberian Peninsula for 2003-2012 were analysed in relation to synoptic patterns and the threeteleconnection indices. The major findings are: (a) The most favourable synoptic patterns for fog-water collection are maritime advections carrying humidity from the Mediterranean basin, and cyclonic circulations, whereas anti-cyclonic situations generally led to large number of foggy days with low fog-collection rates. (b) In terms of winds at 850 hPa, the most favourable low-level flows for fogwater collection are associated with strong winds (>5.1 m s−1) from theMediterranean. Atlantic winds generally cause a greater number of fog days than Mediterranean winds, with less fog-water collection rates. (c) WeMOi has the greatest influence on fog-water collection, mainly during winter and spring months, with statistically significant negative relationships for most of the stations. MOi also shows a great influence, with a large number of statistically significant negative correlations, mainly during the same months as WeMOi. Lastly, NAOi presented the lowest and no significant negative correlations with fog-water collection

    Origin of bistability in the butyl-substituted spirobiphenalenyl-based neutral radical material

    Get PDF
    One of the most remarkable bistable materials reported so far is made of pi dimers of a butyl-substituted spirobiphenalenyl boron radical (butyl-SBP). The phase transition of this material, which is accompanied by changes in its optical, conductive, and magnetic properties, occurs with a hysteretic loop 25 K wide centered at 335 K. Herein, a computational study is presented aimed at deciphering the origin of this hysteresis. The phase transition of butyl-SBP consists of a spin transition of the constituent pi dimers coupled with an order-disorder transition involving the butyl chains linked to the nitrogen atoms of the superimposed phenalenyl rings of the pi dimer. Below 335 K, the terminal methyl group of the butyl chains adopts a gauche conformation with respect to the methylene unit bonded to the nitrogen atom. Above 335 K, the methyl group is in an anti conformation and exhibits dynamic disorder. The gauche -> anti conformational rearrangement triggers the spin transition of the pi dimers and is responsible for the hysteretic behavior of butyl-SBP. Specifically, the onset of the phase transition in the heating mode, and thus, the width of the hysteresis loop, are governed by the high energy cost and strong structural cooperative effects associated with this conformational change. Our results show that coupling a spin switch with a conformational switch in a molecular crystal provides a promising strategy in the design of new bistable materials

    An analytical representation of the ground potential energy surface (2A') of the H + Cl2 → HCl + Cl and Cl + HCl → HCl + Cl reactions, based on ab initio calculations

    Get PDF
    In this work we have studied at an ab initio level the lowest 2A′ potential energy surface (PES) of the HCl2 system. This PES is involved in the H(2S)+Cl2(X 1Σ+g)→HCl(X 1Σ+)+Cl(2P) and Cl(2P)+HCl(X 1Σ+)→HCl(X 1Σ+)+Cl(2P) gas phase elementary chemical reactions. The former reaction is an important chemical laser while the second one is the most frequently used prototype of heavy-light-heavy reaction. A large number of points on the 2A′ PES have been calculated at the PUMP2/6-311G(3d2 f,3p2d) ab initio level. The ab initio calculations show the existence of two angular transition states with negligible or very small barriers to collinearity. This and other properties of the PES are in agreement with previous studies. An analytical expression based on a many-body expansion has been used to obtain a satisfactory fit of the 740 ab initio points calculated, with a root-mean-square deviation within the range of the estimated ab initio method error margin. This analytical representation of the 2A′ PES has been used to evaluate the variational transition state theory thermal rate constants of the above-mentioned reactions, including also the Cl+DCl reaction, and quite good agreement has been obtained when comparing with experimental results. The analytical PES obtained in this work is suitable for use in studies on the kinetics and dynamics of the HCl2 system

    An ab initio analytical potential energy surface for the O(3P) + CS(X1Σ+) → CO(X1Σ+) + S(3P) reaction useful for kinetic and dynamical studies

    Get PDF
    The N(4Su) + NO(X 2Π) → N 2(X 1Σg+) + O( 3Pg) reaction plays an important role in the upper atmosphere chemistry and as a calibration system for discharge flow systems. Surprisingly, very little theoretical and experimental work has been devoted to the characterization of the dynamical features of this system. In this work a Sorbie-Murrell expression for the lowest 3A″ potential energy surface (PES) connecting reactants in their ground electronic states based upon the fitting of an accurate ab initio CI grid of points has been derived. The PES fitted shows no barrier to reaction with respect to the reactants asymptote in accordance with experimental findings and becomes highly repulsive as the NNO angle is varied away from the saddle point geometry. The results of preliminary quasiclassical trajectory calculations on this surface reproduce very well the experimental energy disposal in products, even though the vibrational distribution derived from trajectories seems to be a bit cooler than the experimental data. Moreover, thermal rate constants derived from trajectories are in excellent accordance with experimental value

    Towards the tailored design of benzotriazinyl-based organic radicals displaying a spin transition

    Full text link
    The mechanism of the phase transition of 1-phenyl-3-trifluoromethyl- 1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1), the first reported triazinyl radical to present such a feature, is unveiled. In so doing, we identify the key ingredients that are crucial to enable the phase transition in this family of radicals, and how those can be exploited by a rational design of the spin-carrying units
    corecore