221 research outputs found

    Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

    Full text link
    [EN] Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of AI into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channel intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratios, followed by B removal in a postsynthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as a test reaction. The higher selectivity to propene and lower C-4(=)/C-3(=) ratio in the samples synthesized with B and subsequently deboronated can be related to a larger concentration of acid sites in 10R channels, where monomolecular cracking occurs. Finally, several ZSM-5 samples have been tested in the methanol to propene reaction, and those synthesized through the B -assisted method show longer catalytic lifetime, higher propene yield, and lower yield of alkanes and aromatics.This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and CTQ2015-70126-R. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. C.L. acknowledges the China Scholarship Council (CSC) for a Ph.D. fellowshipLi, C.; Vidal Moya, JA.; Miguel, PJ.; Dedecek, J.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis. 8(8):7688-7697. https://doi.org/10.1021/acscatal.8b02112S7688769788Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024Kassab, E., Seiti, K., & Allavena, M. (1988). Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations. The Journal of Physical Chemistry, 92(23), 6705-6709. doi:10.1021/j100334a043Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731dJones, A. J., & Iglesia, E. (2014). Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites. Angewandte Chemie International Edition, 53(45), 12177-12181. doi:10.1002/anie.201406823Wang, S., & Iglesia, E. (2017). Catalytic diversity conferred by confinement of protons within porous aluminosilicates in Prins condensation reactions. Journal of Catalysis, 352, 415-435. doi:10.1016/j.jcat.2017.06.012Ghorbanpour, A., Rimer, J. D., & Grabow, L. C. (2014). Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catalysis Communications, 52, 98-102. doi:10.1016/j.catcom.2014.04.005Mallikarjun Sharada, S., Zimmerman, P. M., Bell, A. T., & Head-Gordon, M. (2013). Insights into the Kinetics of Cracking and Dehydrogenation Reactions of Light Alkanes in H-MFI. The Journal of Physical Chemistry C, 117(24), 12600-12611. doi:10.1021/jp402506mJanda, A., & Bell, A. T. (2013). Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of the American Chemical Society, 135(51), 19193-19207. doi:10.1021/ja4081937Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657Van Speybroeck, V., De Wispelaere, K., Van der Mynsbrugge, J., Vandichel, M., Hemelsoet, K., & Waroquier, M. (2014). First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 43(21), 7326-7357. doi:10.1039/c4cs00146jTian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810aBJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006Wang, S., Chen, Y., Wei, Z., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. The Journal of Physical Chemistry C, 119(51), 28482-28498. doi:10.1021/acs.jpcc.5b10299Teketel, S., Olsbye, U., Lillerud, K.-P., Beato, P., & Svelle, S. (2010). Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous and Mesoporous Materials, 136(1-3), 33-41. doi:10.1016/j.micromeso.2010.07.013Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2010). Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The Journal of Physical Chemistry C, 115(4), 1096-1102. doi:10.1021/jp106247gDi Iorio, J. R., & Gounder, R. (2016). Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials, 28(7), 2236-2247. doi:10.1021/acs.chemmater.6b00181Di Iorio, J. R., Nimlos, C. T., & Gounder, R. (2017). Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catalysis, 7(10), 6663-6674. doi:10.1021/acscatal.7b01273Liu, M., Yokoi, T., Yoshioka, M., Imai, H., Kondo, J. N., & Tatsumi, T. (2014). Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Physical Chemistry Chemical Physics, 16(9), 4155. doi:10.1039/c3cp54297aDedecek, J., Balgová, V., Pashkova, V., Klein, P., & Wichterlová, B. (2012). Synthesis of ZSM-5 Zeolites with Defined Distribution of Al Atoms in the Framework and Multinuclear MAS NMR Analysis of the Control of Al Distribution. Chemistry of Materials, 24(16), 3231-3239. doi:10.1021/cm301629aPashkova, V., Klein, P., Dedecek, J., Tokarová, V., & Wichterlová, B. (2015). Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework. Microporous and Mesoporous Materials, 202, 138-146. doi:10.1016/j.micromeso.2014.09.056Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119(27), 15303-15315. doi:10.1021/acs.jpcc.5b03289Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., … Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6(11), 7311-7325. doi:10.1021/acscatal.6b01771Pashkova, V., Sklenak, S., Klein, P., Urbanova, M., & Dědeček, J. (2016). Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis. Chemistry - A European Journal, 22(12), 3937-3941. doi:10.1002/chem.201503758Yokoi, T., Mochizuki, H., Biligetu, T., Wang, Y., & Tatsumi, T. (2017). Unique Al Distribution in the MFI Framework and Its Impact on Catalytic Properties. Chemistry Letters, 46(6), 798-800. doi:10.1246/cl.170156Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2007). Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution27Al NMR Spectroscopy and Quantum Mechanics / Molecular Mechanics Study of ZSM-5. Angewandte Chemie International Edition, 46(38), 7286-7289. doi:10.1002/anie.200702628Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2009). Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys., 11(8), 1237-1247. doi:10.1039/b807755jDědeček, J., Sobalík, Z., & Wichterlová, B. (2012). Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catalysis Reviews, 54(2), 135-223. doi:10.1080/01614940.2012.632662Wang, S., Wei, Z., Chen, Y., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 5(2), 1131-1144. doi:10.1021/cs501232rChen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862Zhu, Q., Kondo, J. N., Yokoi, T., Setoyama, T., Yamaguchi, M., Takewaki, T., … Tatsumi, T. (2011). The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. Physical Chemistry Chemical Physics, 13(32), 14598. doi:10.1039/c1cp20338jYang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., … Xu, H. (2012). The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44-47. doi:10.1016/j.catcom.2012.03.013Hu, Z., Zhang, H., Wang, L., Zhang, H., Zhang, Y., Xu, H., … Tang, Y. (2014). Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 4(9), 2891-2895. doi:10.1039/c4cy00376dYaripour, F., Shariatinia, Z., Sahebdelfar, S., & Irandoukht, A. (2015). Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous and Mesoporous Materials, 203, 41-53. doi:10.1016/j.micromeso.2014.10.024Nachtigallová, D., Nachtigall, P., Sierka, M., & Sauer, J. (1999). Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study. Physical Chemistry Chemical Physics, 1(8), 2019-2026. doi:10.1039/a900214fSchröder, K.-P., Sauer, J., Leslie, M., & A.Catlow, C. R. (1992). Siting of AI and bridging hydroxyl groups in ZSM-5: A computer simulation study. Zeolites, 12(1), 20-23. doi:10.1016/0144-2449(92)90004-9Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053Dědeček, J., Kaucký, D., Wichterlová, B., & Gonsiorová, O. (2002). Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Phys. Chem. Chem. Phys., 4(21), 5406-5413. doi:10.1039/b203966bBlay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502jSun, X., Mueller, S., Shi, H., Haller, G. L., Sanchez-Sanchez, M., van Veen, A. C., & Lercher, J. A. (2014). On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 314, 21-31. doi:10.1016/j.jcat.2014.03.013Teketel, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). Shape-Selective Conversion of Methanol to Hydrocarbons Over 10-Ring Unidirectional-Channel Acidic H-ZSM-22. ChemCatChem, 1(1), 78-81. doi:10.1002/cctc.200900057Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K. P., Beato, P., & Svelle, S. (2011). Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catalysis, 2(1), 26-37. doi:10.1021/cs200517

    Estudio de factibilidad de la comercialización de pastas de harina de quinua en el mercado australiano

    Get PDF
    El presente Estudio para la Internacionalización de Pastas de Harina de Quinua a Australia demuestra que es factible aprovechar las oportunidades del entorno y las ventajas comparativas de la quinua, a fin de generar ventajas competitivas que hagan sostenible un modelo de negocio orientado a satisfacer la demanda del consumidor australiano, que busca salud e innovación en los alimentos que consume. La empresa QUINUAK S.A., acorde con la creciente tendencia mundial hacia el consumo de productos sanos y orgánicos, ofrecerá un producto con un valor nutritivo excepcional y muy saludable: Pastas de Harina de Quinua. Las principales ventajas competitivas de este producto estarán basadas en el uso para su elaboración de harina de quinua, este grano andino constituye el único alimento vegetal que posee todos los aminoácidos esenciales, oligoelementos y vitaminas, y además, no contiene gluten; atributos que no poseen las pastas elaboradas de manera convencional. El producto contará con la certificación de producto orgánico y libre de gluten, gracias a lo cual se captará la atención de aquellos consumidores afectados por la enfermedad de celiaquía, y a partir de ello se logrará ampliar aún más la demanda potencial. La empresa tendrá como objetivo principal ingresar al mercado de pastas en la ciudad australiana de Sidney de acuerdo con la demanda potencial calculada. La estrategia de distribución será mediante intermediarios (representantes de ventas, distribuidores) quienes serán el contacto con las grandes cadenas de supermercados, principalmente, y se desarrollarán otros canales conforme el producto se posicione en el mercado. La estrategia de producción se basará en la tercerización de la producción del grano de quinua, así como de las pastas. Para iniciar sus operaciones QUINUAK S.A. requerirá una inversión inicial de aproximadamente dos millones de soles, de los cuales el 40% será aportada por los socios de la empresa y el otro 60% requerirá de capital adicional proveniente de financiamiento (banco o inversionistas). Acorde con las proyecciones financieras, se espera que al finalizar el quinto año de operación, las utilidades después de impuestos asciendan a medio millón de soles aproximadamente, contándose con una TIR de 15.74% y un VAN de setenta y dos mil soles aproximadamente, a una tasa de descuento de 13.56%, con lo cual a los dos años y medio se habrá recuperado la inversión inicial.Tesi

    The role of promoters on the catalytic performance of MxV2O5 bronzes for the selective partial oxidation of H2S

    Full text link
    [EN] Metal-containing vanadium oxide bronzes (MxV2O5; M= Cu, Ag and Ca) have been prepared, characterized (before and after reaction) by various physicochemical techniques, and tested in the partial oxidation of H2S. The catalysts were prepared hydrothermally at 175 ¿C (from gels containing M/V molar ratios of 0.17 or 0.33) and heat-treated at 500 ¿C/2 h in N2. The most effective catalysts, showing a sulfur selectivity greater than 95 % for a H2S conversion beyond 90 %, were those presenting vanadium oxide bronze (ß-Cu0.261V2O5 or Ag0.333V2O5) as the main crystalline phase. Cu- and Ag-containing vanadium oxide bronzes were stable under reaction conditions. For calcium containing materials (mainly presenting the Ca0.17V2O5 bronze phase), the formation of CaSO4 has been observed during the reaction, which resulted in a negative effect on both activity and selectivity. The nature of active and selective sites in this type of catalysts, as well as the role of promoters, are also discussed.The authors would like to acknowledge the Ministerio de Ciencia e Innovacion of Spain (TED2021-130756B-C31, TED2021-130756B-C32 and MAT2017-84118-C2-1-R projects) . Authors from ITQ also thank Project SEV-2016-0683 for supporting this research. A.A. acknowledges Severo Ochoa Excellence Program for his fellowship (BES-2017-080329) and Dr. Ferran Sabate from ITQ for his assistance with the EPR data treatment.Ruiz-Rodríguez, L.; De Arriba-Mateos, A.; Vidal Moya, JA.; Blasco Lanzuela, T.; Rodríguez-Castellón, E.; López Nieto, JM. (2022). The role of promoters on the catalytic performance of MxV2O5 bronzes for the selective partial oxidation of H2S. Applied Catalysis A General. 647:1-11. https://doi.org/10.1016/j.apcata.2022.11890011164

    Partial oxidation of hydrogen sulphide to sulphur over vanadium oxides bronzes

    Full text link
    [EN] Me-containing V2O5 materials (Me =Ag, Cu, Ca and Na) were prepared hydrothermally (from aqueous gels containing V2O5/H2O2/MeClx mixtures, with Me/V ratios of 0.17). The samples were finally heattreated in air or in N2 atmosphere. The heat-treated samples have been characterized by several physicochemical techniques and tested in the partial oxidation of hydrogen sulfide. According to XRD, electron paramagnetic resonance and 51V NMR results, Ag0.35V2O5 and Na0.33V2O5 (or NaV6O15) bronzes with a minority presence of V2O5 were mainly obtained in the case of Ag- and Na-containing materials in samples both heat-treated in air or in N2 atmosphere. In the case of Cu- and Ca-containing samples, V2O5 was mainly observed in samples calcined in air. However, Cu0.26V2O5 and Ca0.17V2O5 bronzes, with the minority presence of V2O5, have been observed in Cu- and Ca-containing samples heat-treated in N2. On the other hand, the catalytic behavior strongly depends on the metal promoter. Thus catalysts presenting vanadium oxide bronzes, i.e. samples presenting Ag0.35V2O5, NaV6O15, Cu0.26V2O5 or Ca0.17V2O5 shows a catalytic activity during the partial oxidation of H2S to sulfur higher than that observed over pure V2O5 or over promoted catalysts presenting mainly V2O5 (i.e. Cu- or Ca-containing samples calcined in air). Moreover, some differences in the selectivity to sulfur were observed. A higher formation of SO2 at high reaction temperature has been favored over Ag0.35V2O5-containing catalyst. This different behavior between samples could be explained by the presence of metallic Ag on the surface of Ag0.35V2O5, which was detected by XRD. Also, higher formation of SO2 is favored in the case of catalyst heat-treated in N2, in which the presence of VO2, as minority, could have a role in combustion of sulfur. Accordingly, this work should be considered as a first approach to relate catalytic activity of the Me-containing vanadium oxide bronze (containing Ag, Cu, Ca and Na) for the selective oxidation of hydrogen sulfide.The authors would like to thank the DGICYT in Spain (Projects CTQ2012-37925-0O3-01 and CTQ2012-37925-0O3-03) for financial support.Soriano Rodríguez, MD.; Vidal Moya, JA.; Rodriguez Castellon, E.; Melo Faus, FV.; Blasco Lanzuela, T.; López Nieto, JM. (2015). Partial oxidation of hydrogen sulphide to sulphur over vanadium oxides bronzes. Catalysis Today. 259:237-244. https://doi.org/10.1016/j.cattod.2015.08.009S23724425

    Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane

    Full text link
    [EN] Supported vanadium-containing hexagonal tungsten bronzes (HTBs) were prepared for the first time using a combination of a new soft synthetic procedure and fine-tuned heat treatments. The characterization of heat-treated samples indicates that both unsupported and Al2O3-supported materials present mainly vanadium-containing crystals with HTB structure smaller in the supported materials. Raman, diffuse reflectance UV-visible and EPR spectroscopic results suggest the presence of different V species depending on the V loading and catalyst composition. When used as catalysts for ethane oxidative dehydrogenation (ODH), selected supported vanadium-HTBs show selectivity to ethylene as high as 80% at ethane conversion of around 18%. These values position these new materials among the most active and selective catalysts so far reported in the literature for ethane ODH over supported vanadium oxide catalysts.The authors acknowledge the DGICYT in Spain (projects RTI2018-099668-B-C21 and SEV-2016-0683) for financial support. The research group of Prof. Fabrizio Cavani (University of Bologna, Italy) and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. The authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for its support.Benomar, S.; Chieregato, A.; Masso, A.; Soriano Rodríguez, MD.; Vidal Moya, JA.; Blasco Lanzuela, T.; Issaadi, R.... (2020). Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane. Catalysis Science & Technology. 10(23):8064-8076. https://doi.org/10.1039/d0cy01220cS806480761023GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., & Zavalij, P. (1995). The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 257-268. doi:10.1016/0167-2738(94)00220-mChen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323cBartha, L., Kiss, A. B., & Szalay, T. (1995). Chemistry of tungsten oxide bronzes. International Journal of Refractory Metals and Hard Materials, 13(1-3), 77-91. doi:10.1016/0263-4368(94)00031-xTilley, R. J. D. (1995). The crystal chemistry of the higher tungsten oxides. International Journal of Refractory Metals and Hard Materials, 13(1-3), 93-109. doi:10.1016/0263-4368(95)00004-6Michailovski, A., Krumeich, F., & Patzke, G. R. (2004). Hierarchical Growth of Mixed Ammonium Molybdenum/Tungsten Bronze Nanorods. Chemistry of Materials, 16(8), 1433-1440. doi:10.1021/cm0311731Quan, H., Gao, Y., & Wang, W. (2020). Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7(4), 817-838. doi:10.1039/c9qi01516gMichailovski, A., & Patzke, G. R. (2006). Hydrothermal Synthesis of Molybdenum Oxide Based Materials: Strategy and Structural Chemistry. Chemistry - A European Journal, 12(36), 9122-9134. doi:10.1002/chem.200600977Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J.-D., Baiker, A., Komarneni, S., & Patzke, G. R. (2006). Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 19(2), 185-197. doi:10.1021/cm061020oKiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.-D., Michailovski, A., Baiker, A., … Patzke, G. R. (2008). Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 20(9), 3022-3033. doi:10.1021/cm7028036Magnéli, A., Blomberg, B., Reio, L., Saluste, E., Stjernholm, R., & Ehrensvärd, G. (1951). Contribution to the Knowledge of the Alkali Tungsten Bronzes. Acta Chemica Scandinavica, 5, 372-378. doi:10.3891/acta.chem.scand.05-0372C. N. R. Rao and K.Biswas , Soft Chemistry Routes, in Essentials of Inorganic Materials Synthesis , ed. C. N. R. Rao and K. Biswas , John Wiley & Sons, Inc. , New Jersey , 2015 , ch. 10Li, F., Qian, Y., & Stein, A. (2010). Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 22(10), 3226-3235. doi:10.1021/cm100478zGopalakrishnan, J. (1995). Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chemistry of Materials, 7(7), 1265-1275. doi:10.1021/cm00055a001Stevenson, S., & Sermon, P. A. (1987). Promotion of nitrogen and hydrogen chemisorption and ammonia synthesis on alumina-supported hexagonal tungsten bronze, Kx WO3. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(7), 2175. doi:10.1039/f19878302175Szilágyi, I. M., Hange, F., Madarász, J., & Pokol, G. (2006). In situ HT-XRD Study on the Formation of Hexagonal Ammonium Tungsten Bronze by Partial Reduction of Ammonium Paratungstate Tetrahydrate. European Journal of Inorganic Chemistry, 2006(17), 3413-3418. doi:10.1002/ejic.200500875Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eGarcía-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kChieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966Kube, P., Frank, B., Wrabetz, S., Kröhnert, J., Hävecker, M., Velasco-Vélez, J., … Trunschke, A. (2017). Functional Analysis of Catalysts for Lower Alkane Oxidation. ChemCatChem, 9(4), 573-585. doi:10.1002/cctc.201601194Rozanska, X., Fortrie, R., & Sauer, J. (2014). Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 136(21), 7751-7761. doi:10.1021/ja503130zDinse, A., Schomäcker, R., & Bell, A. T. (2009). The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Physical Chemistry Chemical Physics, 11(29), 6119. doi:10.1039/b821131kBlasco, T., Galli, A., López Nieto, J. M., & Trifiró, F. (1997). Oxidative Dehydrogenation of Ethane andn-Butane on VOx/Al2O3Catalysts. Journal of Catalysis, 169(1), 203-211. doi:10.1006/jcat.1997.1673Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570Al-Ghamdi, S., Volpe, M., Hossain, M. M., & de Lasa, H. (2013). VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity. Applied Catalysis A: General, 450, 120-130. doi:10.1016/j.apcata.2012.10.007SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016Gaffney, A. M., & Mason, O. M. (2017). Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catalysis Today, 285, 159-165. doi:10.1016/j.cattod.2017.01.020HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002Ipsakis, D., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2017). Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chemical Engineering Journal, 308, 840-852. doi:10.1016/j.cej.2016.09.114Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811kZhu, H., Rosenfeld, D. C., Harb, M., Anjum, D. H., Hedhili, M. N., Ould-Chikh, S., & Basset, J.-M. (2016). Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 6(5), 2852-2866. doi:10.1021/acscatal.6b00044Carrero, C. A., Burt, S. P., Huang, F., Venegas, J. M., Love, A. M., Mueller, P., … Hermans, I. (2017). Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science & Technology, 7(17), 3707-3714. doi:10.1039/c7cy01036bLove, A. M., Carrero, C. A., Chieregato, A., Grant, J. T., Conrad, S., Verel, R., & Hermans, I. (2016). Elucidation of Anchoring and Restructuring Steps during Synthesis of Silica-Supported Vanadium Oxide Catalysts. Chemistry of Materials, 28(15), 5495-5504. doi:10.1021/acs.chemmater.6b02118Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679Barman, S., Maity, N., Bhatte, K., Ould-Chikh, S., Dachwald, O., Haeßner, C., … Basset, J.-M. (2016). Single-Site VOx Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane. ACS Catalysis, 6(9), 5908-5921. doi:10.1021/acscatal.6b01263Maffia, G. J., Gaffney, A. M., & Mason, O. M. (2016). Techno-Economic Analysis of Oxidative Dehydrogenation Options. Topics in Catalysis, 59(17-18), 1573-1579. doi:10.1007/s11244-016-0677-9Sanati, M., & Andersson, A. (1990). Ammoxtoation of toluene over TiO2(B)-supported vanadium oxide catalysts. Journal of Molecular Catalysis, 59(2), 233-255. doi:10.1016/0304-5102(90)85055-mSoriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7SOLSONA, B., DEJOZ, A., GARCIA, T., CONCEPCION, P., NIETO, J., VAZQUEZ, M., & NAVARRO, M. (2006). Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 117(1-3), 228-233. doi:10.1016/j.cattod.2006.05.025Spałek, T., Pietrzyk, P., & Sojka, Z. (2004). Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. Journal of Chemical Information and Modeling, 45(1), 18-29. doi:10.1021/ci049863sPietrzyk, P., & Góra-Marek, K. (2016). Paramagnetic dioxovanadium(iv) molecules inside the channels of zeolite BEA – EPR screening of VO2 reactivity toward small gas-phase molecules. Physical Chemistry Chemical Physics, 18(14), 9490-9496. doi:10.1039/c6cp01046fShaikh, S. F., Kalanur, S. S., Mane, R. S., & Joo, O.-S. (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 42(28), 10085. doi:10.1039/c3dt50728aSzilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668xCHAN, S. (1985). Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcination temperatures. Journal of Catalysis, 92(1), 1-10. doi:10.1016/0021-9517(85)90231-3G. Deo , F. D.Hardcastle , M.Richards , A. M.Hirt and I. E.Wachs , ACS Symposium Series, in Novel Materials in Heterogeneous Catalysis , ed. R. Baker , et al. , American Chemical Society , Washington, DC , 1990 , p. 317França, M. C. K., da Silva San Gil, R. A., & Eon, J.-G. (2003). Alumina-supported catalysts for propane oxidative dehydrogenation from mixed VXM(6−X)O19n− (M=W, Mo) hexametalate precursors. Catalysis Today, 78(1-4), 105-115. doi:10.1016/s0920-5861(02)00302-4Catana, G., Rao, R. R., Weckhuysen, B. M., Van Der Voort, P., Vansant, E., & Schoonheydt, R. A. (1998). Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3 Coating of Zeolite Y. The Journal of Physical Chemistry B, 102(41), 8005-8012. doi:10.1021/jp981482sBrückner, A. (2010). In situ electron paramagnetic resonance: a unique tool for analyzing structure–reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 39(12), 4673. doi:10.1039/b919541fBrückner, A. (2006). Spin–spin exchange in vanadium-containing catalysts studied by in situ-EPR: a sensitive monitor for disorder-related activity. Topics in Catalysis, 38(1-3), 133-139. doi:10.1007/s11244-006-0078-6Strassberger, Z., Ramos-Fernandez, E. V., Boonstra, A., Jorna, R., Tanase, S., & Rothenberg, G. (2013). Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 42(15), 5546. doi:10.1039/c3dt32954bKompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008Concepción, P., Knözinger, H., López Nieto, J. M., & Martínez-Arias, A. (2002). Characterization of Supported Vanadium Oxide Catalysts. Nature of the Vanadium Species in Reduced Catalysts. The Journal of Physical Chemistry B, 106(10), 2574-2582. doi:10.1021/jp010918sSilversmit, G., Depla, D., Poelman, H., Marin, G. B., & De Gryse, R. (2004). Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 135(2-3), 167-175. doi:10.1016/j.elspec.2004.03.004Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Applied Surface Science, 249(1-4), 231-237. doi:10.1016/j.apsusc.2004.11.083KLOSE, F., WOLFF, T., LORENZ, H., SEIDELMORGENSTERN, A., SUCHORSKI, Y., PIORKOWSKA, M., & WEISS, H. (2007). Active species on γ-alumina-supported vanadia catalysts: Nature and reducibility. Journal of Catalysis, 247(2), 176-193. doi:10.1016/j.jcat.2007.01.013Hess, C., Tzolova-Müller, G., & Herbert, R. (2007). The Influence of Water on the Dispersion of Vanadia Supported on Silica SBA-15:  A Combined XPS and Raman Study. The Journal of Physical Chemistry C, 111(26), 9471-9479. doi:10.1021/jp0713920Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657wNieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-

    Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05689".[EN] Highly crystalline pure silica MFI zeolites have been synthesized using tetraethylammonium (TEA), tetraethylphosphonium (TEP), or a mixture of both cations in different proportions as organic structure directing agents (OSDAs). The zeolites have been deeply characterized in order to get insight about the guest guest interactions involving the OSDAs and the guest host interactions involving the OSDAs and the inorganic framework, as well as the main features of the resulting materials. The results show that the average size of the MFI crystals decreases when TEP is present within the zeolite and that this cation is homogeneously distributed throughout the crystallites. The multinuclear NMR investigation (H-1, C-13, N-14, F-19, Si-29, P-31) indicates that TEP interacts with the zeolite host creating higher heterogeneity of the SiO4 crystallographic sites and a diminution on the mobility of fluorine atoms incorporated into the zeolite. Moreover, the presence of TEP influences the dynamics of the nitrogen atoms of the TEA molecules, and 2D heteronuclear correlation experiments give evidence on the spatial proximity of the TEA and TEP molecules in the MFI zeolites. Then, it is concluded that TEA and TEP are intimately mixed within the zeolite voids of the pure silica MFI samples synthesized by the dual template route.Financial support by the MINECO of Spain through the Severo Ochoa (SEV-2016-0683) and RTI2018-101784-B-I00 projects is gratefully acknowledged. The authors also thank the Microscopy Service of the Universitat Politecnica de Valencia for its assistance in microscopy characterization (FESEM equipment preparation). J.M.-O. (SEV-2012-0267-02) is grateful to the Severo Ochoa Program for a predoctoral fellowship.Martinez-Ortigosa, J.; Simancas-Coloma, J.; Vidal Moya, JA.; Gaveau, P.; Rey Garcia, F.; Alonso, B.; Blasco Lanzuela, T. (2019). Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. The Journal of Physical Chemistry C. 123(36):22324-22334. https://doi.org/10.1021/acs.jpcc.9b05689S223242233412336Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060iWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062Liu, X., Yan, N., Wang, L., Ma, C., Guo, P., Tian, P., … Liu, Z. (2019). Landscape of AlPO-based structures and compositions in the database of zeolite structures. Microporous and Mesoporous Materials, 280, 105-115. doi:10.1016/j.micromeso.2019.01.047McCusker, L. B., Liebau, F., & Engelhardt, G. (2003). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials, 58(1), 3-13. doi:10.1016/s1387-1811(02)00545-0Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914uCorma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406nBurton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028Chauhan, N. L., Das, J., Jasra, R. V., Parikh, P. A., & Murthy, Z. V. P. (2012). Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Materials Letters, 74, 115-117. doi:10.1016/j.matlet.2012.01.094Mitani, E., Yamasaki, Y., Tsunoji, N., Sadakane, M., & Sano, T. (2018). Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 267, 192-197. doi:10.1016/j.micromeso.2018.03.033Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bCamblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344Koller, H., Wölker, A., Villaescusa, L. A., Díaz-Cabañas, M. J., Valencia, S., & Camblor, M. A. (1999). Five-Coordinate Silicon in High-Silica Zeolites. Journal of the American Chemical Society, 121(14), 3368-3376. doi:10.1021/ja9840549Koller, H., Wölker, A., Eckert, H., Panz, C., & Behrens, P. (1997). Five-Coordinate Silicon in Zeolites: Probing SiO4/2F− Sites in Nonasil and ZSM-5 with29Si Solid-State NMR Spectroscopy. Angewandte Chemie International Edition in English, 36(24), 2823-2825. doi:10.1002/anie.199728231Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317cSonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621cKakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204-213. doi:10.1016/j.apcata.2019.02.026Van der Bij, H. E., & Weckhuysen, B. M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chemical Society Reviews, 44(20), 7406-7428. doi:10.1039/c5cs00109aBLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011Liu, X., & Luo, Q. (2017). Solid State NMR Spectroscopy Studies of the Nature of Structure Direction of OSDAs in Pure-Silica Zeolites ZSM-5 and Beta. The Journal of Physical Chemistry C, 121(24), 13211-13217. doi:10.1021/acs.jpcc.7b03350Fyfe, C. A., & Brouwer, D. H. (2006). Optimization, Standardization, and Testing of a New NMR Method for the Determination of Zeolite Host−Organic Guest Crystal Structures. Journal of the American Chemical Society, 128(36), 11860-11871. doi:10.1021/ja060744yDib, E., Gimenez, A., Mineva, T., & Alonso, B. (2015). Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 44(38), 16680-16683. doi:10.1039/c5dt02558cDib, E., Mineva, T., Gaveau, P., & Alonso, B. (2013). 14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 15(42), 18349. doi:10.1039/c3cp51845kDib, E., Mineva, T., Gaveau, P., Véron, E., Sarou-Kanian, V., Fayon, F., & Alonso, B. (2017). Probing Disorder in Al-ZSM-5 Zeolites by 14N NMR Spectroscopy. The Journal of Physical Chemistry C, 121(29), 15831-15841. doi:10.1021/acs.jpcc.7b04861Tuel, A., Ben Taǎrit, Y., & Naccache, C. (1993). Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides. Zeolites, 13(6), 454-461. doi:10.1016/0144-2449(93)90120-rDing, J., Xue, T., Wu, H., & He, M. (2017). One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5. Chinese Journal of Catalysis, 38(1), 48-57. doi:10.1016/s1872-2067(16)62549-4Schmidt-Rohr, K., Clauss, J., & Spiess, H. W. (1992). Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules, 25(12), 3273-3277. doi:10.1021/ma00038a037Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984Chen, X., Yan, W., Cao, X., Yu, J., & Xu, R. (2009). Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 119(1-3), 217-222. doi:10.1016/j.micromeso.2008.10.015Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053Baerlocher, Ch.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/.Fyfe, C. A., Brouwer, D. H., Lewis, A. R., Villaescusa, L. A., & Morris, R. E. (2002). Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 124(26), 7770-7778. doi:10.1021/ja012558sFyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by 1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBrunklaus, G., Koller, H., & Zones, S. I. (2016). Defect Models of As-Made High-Silica Zeolites: Clusters of Hydrogen-Bonds and Their Interaction with the Organic Structure-Directing Agents Determined from1H Double and Triple Quantum NMR Spectroscopy. Angewandte Chemie International Edition, 55(46), 14459-14463. doi:10.1002/anie.201607428Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036Dib, E., Grand, J., Mintova, S., & Fernandez, C. (2015). Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 27(22), 7577-7579. doi:10.1021/acs.chemmater.5b03668Losch, P., Pinar, A. B., Willinger, M. G., Soukup, K., Chavan, S., Vincent, B., … Louis, B. (2017). H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 345, 11-23. doi:10.1016/j.jcat.2016.11.005Dib, E., Alonso, B., & Mineva, T. (2014). DFT-D Study of 14N Nuclear Quadrupolar Interactions in Tetra-n-alkyl Ammonium Halide Crystals. The Journal of Physical Chemistry A, 118(19), 3525-3533. doi:10.1021/jp502858nMineva, T., Gaveau, P., Galarneau, A., Massiot, D., & Alonso, B. (2011). 14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. The Journal of Physical Chemistry C, 115(39), 19293-19302. doi:10.1021/jp206567

    Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    Full text link
    [EN] We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images.The authors thank the Spanish MINECO (projects MAT2012-39290-CO2-01 and MAT2012-39290-CO2-02) for financial support. A.C.-G. also thanks "La Caixa" Foundation for a Ph.D. scholarship. We fully appreciate the assistance of the Electron Microscopy Service of the UPV and INSCANNER S.L.Cabrera-García, A.; Vidal Moya, JA.; Bernabéu, Á.; Pacheco Torres, J.; Checa Chavarría, E.; Fernández, E.; Botella Asuncion, P. (2016). Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging. Nanomaterials. 6(6):1-15. https://doi.org/10.3390/nano6060109S1156

    Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites

    Get PDF
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 16390 16396 , which has been published in final form at https://doi.org/10.1002/chem.201904043. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS). Finally, the influence of trivalent elements such as B, Al, or Ga isomorphically replacing Si atoms in the framework structure and its interaction with the As species has been studied. The suitability of the tetraalkylarsonium cation for carrying out the crystallization of zeolites is demonstrated along with the benefit of the presence of As atoms in the occluded OSDA, which allows its advanced characterization as well as the study of its evolution during OSDA removal by thermal treatments.Program Severo Ochoa SEV-2016-0683 and Maria de Maeztu MDM-2015-0538 are gratefully acknowledged. S.S-F. thanks MEC for his Severo Ochoa Grant SPV-2013-067884, P.O.-B. and G.M.E. thank MEC for his Ramon y Cajal contracts (RYC-2014-16620 and RYC-2013-14386). The authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00, RTI2018-101784-B-I00 and CTQ2017-89528-P) and the Generalitat Valeciana (PROMETEO/2017/066). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. We gratefully acknowledge ESRF synchrotron for allocating beamtime (proposal CH-5193), the Italian CRG beam-line at ESRF (LISA-BM08), and Alessandro Puri for the help and technical support during our experiment. C.W.L. (Science without Frontiers-Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship.Saez-Ferre, S.; Lopes, CW.; Simancas-Coloma, J.; Vidal Moya, JA.; Blasco Lanzuela, T.; Agostini, G.; Mínguez Espallargas, G.... (2019). Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal. 25(71):16390-16396. https://doi.org/10.1002/chem.201904043S16390163962571Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016Shayib, R. M., George, N. C., Seshadri, R., Burton, A. W., Zones, S. I., & Chmelka, B. F. (2011). Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks. Journal of the American Chemical Society, 133(46), 18728-18741. doi:10.1021/ja205164uInternational Zeolite Association Website http://www.iza-online.org/(accessed October 4 2018).Pinar, A. B., McCusker, L. B., Baerlocher, C., Hwang, S.-J., Xie, D., Benin, A. I., & Zones, S. I. (2016). Synthesis and structural characterization of Zn-containing DAF-1. New Journal of Chemistry, 40(5), 4160-4166. doi:10.1039/c5nj02897cDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCorma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107Hernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kSimancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie International Edition, 54(43), 12805-12808. doi:10.1002/anie.201506678Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie, 127(43), 12996-12999. doi:10.1002/ange.201506678Lee, S., Jo, C., Park, H., Kim, J., & Ryoo, R. (2019). Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 280, 75-81. doi:10.1016/j.micromeso.2019.01.048Fattorini, D., Notti, A., & Regoli, F. (2006). Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chemistry and Ecology, 22(5), 405-414. doi:10.1080/02757540600917328Bonilla, G., Díaz, I., Tsapatsis, M., Jeong, H.-K., Lee, Y., & Vlachos, D. G. (2004). Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chemistry of Materials, 16(26), 5697-5705. doi:10.1021/cm048854wVan Koningsveld, H., van Bekkum, H., & Jansen, J. C. (1987). On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallographica Section B Structural Science, 43(2), 127-132. doi:10.1107/s0108768187098173Fyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBalimann, G., & Pregosin, P. . (1977). Arsenic-75 nuclear magnetic resonance. A study of some arsenic salts. Journal of Magnetic Resonance (1969), 26(2), 283-289. doi:10.1016/0022-2364(77)90174-3Klinowski, J. (1991). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 91(7), 1459-1479. doi:10.1021/cr00007a010Canche-Tello, J., Vargas, M. C., Hérnandez-Cobos, J., Ortega-Blake, I., Leclercq, A., Solari, P. L., … Mustre de Leon, J. (2015). X-ray Accelerated Photo-Oxidation of As(III) in Solution. The Journal of Physical Chemistry A, 119(12), 2829-2833. doi:10.1021/jp510596pArai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray Absorption Spectroscopic Investigation of Arsenite and Arsenate Adsorption at the Aluminum Oxide–Water Interface. Journal of Colloid and Interface Science, 235(1), 80-88. doi:10.1006/jcis.2000.7249Farquhar, M. L., Charnock, J. M., Livens, F. R., & Vaughan, D. J. (2002). Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite:  An X-ray Absorption Spectroscopy Study. Environmental Science & Technology, 36(8), 1757-1762. doi:10.1021/es010216gMorin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., … Brown Jr., G. E. (2008). Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & Technology, 42(7), 2361-2366. doi:10.1021/es072057sRamírez-Solís, A., Mukopadhyay, R., Rosen, B. P., & Stemmler, T. L. (2004). Experimental and Theoretical Characterization of Arsenite in Water:  Insights into the Coordination Environment of As−O. Inorganic Chemistry, 43(9), 2954-2959. doi:10.1021/ic0351592Prieto, C., Blasco, T., Camblor, M., & Pérez-Pariente, J. (2000). Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy. Journal of Materials Chemistry, 10(6), 1383-1387. doi:10.1039/b001643hLamberti, C., Turnes Palomino, G., Bordiga, S., Zecchina, A., Spanò, G., & Otero Areán, C. (1999). Catalysis Letters, 63(3/4), 213-216. doi:10.1023/a:1019025206662Axon, S. A., Huddersman, K., & Klinowski, J. (1990). Gallium EXAFS and solid-state NMR studies of Ga-substituted MFI-type zeolites. Chemical Physics Letters, 172(5), 398-404. doi:10.1016/s0009-2614(90)87133-

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group
    corecore