40 research outputs found

    Neuroimmune alterations in autism: a translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid

    Get PDF
    Autism Spectrum Disorder (ASD) is a highly prevalent developmental disorder characterized by deficits in communication and social interaction and in stereotyped or repetitive behaviors. Besides the classical behavioral dyad, several comorbidities are frequently present in patients with ASD, such as anxiety, epilepsy, sleep disturbances and gastrointestinal tract dysfunctions. Although the etiology of ASD remains unclear, there is supporting evidence for the involvement of both genetic and environmental factors. Valproic acid (VPA) is an anticonvulsant and mood stabilizer that, when used during the gestational period, increases the risk of ASD in the offspring. The animal model of autism by prenatal exposure to VPA shows construct and face validity, since several changes seen in subjects with autism are also observed in the VPA animal model. Neuroimmune alterations are common both in autistic individuals and in animal models of autism. In addition, exposure to pathogens during the pregnancy is a known risk factor for ASD, and maternal immune activation can lead to autistic-like features in animals. Thus, immunological alterations in pregnancy could affect the developing embryo, since immune molecules can pass through the placental barrier. Here, we summarize important alterations in inflammatory markers, such cytokines and chemokines in patients with ASD and in the VPA animal model

    Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid

    Get PDF
    Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive/stereotyped behaviors. Its prevalence is increasing, affecting one in 36 children in the United States. The valproic acid (VPA) induced animal model of ASD is a reliable method for investigating cellular, molecular, and behavioral aspects related to the disorder. Trans-Resveratrol (RSV), a polyphenol with anti-inflammatory and antioxidant effects studied in various diseases, has recently demonstrated the ability to prevent cellular, molecular, sensory, and social deficits in the VPA model. In this study, we examined the effects of prenatal exposure to VPA and the potential preventive effects of RSV on the offspring. Method: We monitored gestational weight from embryonic day 6.5 until 18.5 and assessed the onset of developmental milestones and morphometric parameters in litters. The generalized estimating equations (GEE) were used to analyze longitudinal data. Results: Exposure to VPA during rat pregnancy resulted in abnormal weight gain fold-changes on embryonic days 13.5 and 18.5, followed by fewer animals per litter. Additionally, we discovered a positive correlation between weight variation during E15.5-E18.5 and the number of rat pups in the VPA group. Conclusion: VPA exposure led to slight length deficiencies and delays in the onset of developmental milestones. Interestingly, the prenatal RSV treatment not only prevented most of these delays but also led to the early onset of certain milestones and improved morphometric characteristics in the offspring. In summary, our findings suggest that RSV may have potential as a therapeutic intervention to protect against the negative effects of prenatal VPA exposure, highlighting its importance in future studies of prenatal neurodevelopmental disorders

    Aberrant IL-17 levels in rodent models of Autism Spectrum Disorder:a systematic review

    Get PDF
    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterised by stereotyped behaviours, specific interests, and impaired communication skills. Elevated levels of pro-inflammatory cytokines, such as interleukin-17A (IL-17A or IL-17), have been implicated as part of immune alterations that may contribute to this outcome. In this context, rodent models have helped elucidate the role of T-cell activation and IL-17 secretion in the pathogenesis of ASD. Regarding the preclinical findings, the data available is contradictory in offspring but not in the pregnant dams, pointing to IL-17 as one of the main drivers of altered behaviour in some models ASD, whilst there are no alterations described in IL-17 levels in others. To address this gap in the literature, a systematic review of altered IL-17 levels in rodent models of ASD was conducted. In total, 28 studies that explored IL-17 levels were included and observed that this cytokine was generally increased among the different models of ASD. The data compiled in this review can help the choice of animal models to study the role of cytokines in the development of ASD, seeking a parallel with immune alterations observed in individuals with this condition. Systematic Review Registration: PROSPERO, identifier CRD42022306558

    Lactate Protects Microglia and Neurons from Oxygen-Glucose Deprivation/Reoxygenation

    Get PDF
    Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation

    Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA

    Get PDF
    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD

    Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid

    Get PDF
    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data

    Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life

    Get PDF
    Abstract: Background: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. Methods: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1β, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and β-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. Results: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. Conclusion: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter
    corecore