27 research outputs found

    How to improve research capacity strengthening efforts: learning from the monitoring and evaluation of four research consortia in Africa

    Get PDF
    Recent efforts to shift the control and leadership of health research on African issues to Africa have led to increased investments for scientific research capacity strengthening (RCS) on the continent and a greater demand for accountability, value for money and demonstration of return on investment. There is limited literature on monitoring and evaluation (M&E) of RCS systems and there is a clear need to further explore whether the M&E frameworks and approaches that are currently used are fit for purpose. The M&E approaches taken by four African RCS consortia funded under the Developing Excellence in Leadership, Training and Science in Africa (DELTAS) I initiative were assessed using several methods, including a framework comparison of the M&E approaches, semi-structured interviews and facilitated discussion sessions. The findings revealed a wide range in the number of indicators used in the M&E plans of individual consortium, which were uniformly quantitative and at the output and outcome levels. Consortia revealed that additional information could have been captured to better evaluate the success of activities and measure the ripple effects of their efforts. While it is beneficial for RCS consortia to develop and implement their own M&E plans, this could be strengthened by routine engagement with funders/programme managers to further align efforts. It is also important for M&E plans to consider qualitative data capture for assessment of RCS efforts. Efforts could be further enhanced by supporting platforms for cross-consortia sharing, particularly when trying to assess more complex effects. Consortia should make sure that processes for developmental evaluation, and capturing and using the associated learning, are in place. Sharing the learning associated with M&E of RCS efforts is vital to improve future efforts. Investing and improving this aspect of RCS will help ensure tracking of progress and impact of future efforts, and ensure accountability and the return on investment. The findings are also likely applicable well beyond health research

    Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals

    Get PDF
    AbstractBiomarkers for active tuberculosis (TB) are urgently needed to improve rapid TB diagnosis. The objective of this study was to identify serum protein expression changes associated with TB but not latent Mycobacterium tuberculosis infection (LTBI), uninfected states, or respiratory diseases other than TB (ORD). Serum samples from 209 HIV uninfected (HIV−) and co-infected (HIV+) individuals were studied. In the discovery phase samples were analyzed via liquid chromatography and mass spectrometry, and in the verification phase biologically independent samples were analyzed via a multiplex multiple reaction monitoring mass spectrometry (MRM-MS) assay. Compared to LTBI and ORD, host proteins were significantly differentially expressed in TB, and involved in the immune response, tissue repair, and lipid metabolism. Biomarker panels whose composition differed according to HIV status, and consisted of 8 host proteins in HIV− individuals (CD14, SEPP1, SELL, TNXB, LUM, PEPD, QSOX1, COMP, APOC1), or 10 host proteins in HIV+ individuals (CD14, SEPP1, PGLYRP2, PFN1, VASN, CPN2, TAGLN2, IGFBP6), respectively, distinguished TB from ORD with excellent accuracy (AUC=0.96 for HIV− TB, 0.95 for HIV+ TB). These results warrant validation in larger studies but provide promise that host protein biomarkers could be the basis for a rapid, blood-based test for TB

    How to improve research capacity strengthening efforts: learning from the monitoring and evaluation of four research consortia in Africa

    Get PDF
    Recent efforts to shift the control and leadership of health research on African issues to Africa have led to increased investments for scientific research capacity strengthening (RCS) on the continent, and a greater demand for accountability, value for money and demonstration of return on investment. There is limited literature on monitoring and evaluation (M&E) of RCS systems and there is a clear need to further explore whether the M&E frameworks and approaches that are currently used are fit for purpose. The M&E approaches taken by four African RCS consortia funded under the Developing Excellence in Leadership, Training and Science in Africa (DELTAS) I initiative were assessed using several methods including: a framework comparison of the M&E approaches; semi-structured interviews; and facilitated discussion sessions. The findings revealed a wide range in the number of indicators used in the M&E plans of individual consortia, which were uniformly quantitative and at the output and outcome level. Consortia revealed that additional information could have been captured to better evaluate the success of activities and measure the ripple effects of the efforts. While it is beneficial for RCS consortia to develop and implement their own M&E plans, this could be strengthened by routine engagement with funders/programme managers to further align efforts. It is also important for M&E plans to consider qualitative data capture for assessment of RCS efforts. Efforts could be further enhanced by supporting platforms for cross-consortia sharing, particularly when trying to assess more complex effects. Consortia should make sure that processes for developmental evaluation, and capturing and using the associated learning, are in place. Sharing the learning associated with M&E of RCS efforts is vital to improve future efforts. Investing and improving this aspect of RCS will help ensure tracking of progress and impact of future efforts, and ensure accountability and the return on investment. The findings are also likely applicable well beyond health research

    Prospective Monitoring Reveals Dynamic Levels of T Cell Immunity to Mycobacterium Tuberculosis in HIV Infected Individuals

    Get PDF
    Monitoring of latent Mycobacterium tuberculosis infection may prevent disease. We tested an ESAT-6 and CFP-10-specific IFN-γ Elispot assay (RD1-Elispot) on 163 HIV-infected individuals living in a TB-endemic setting. An RD1-Elispot was performed every 3 months for a period of 3–21 months. 62% of RD1-Elispot negative individuals were positive by cultured Elispot. Fluctuations in T cell response were observed with rates of change ranging from −150 to +153 spot-forming cells (SFC)/200,000 PBMC in a 3-month period. To validate these responses we used an RD1-specific real time quantitative PCR assay for monokine-induced by IFN-γ (MIG) and IFN-γ inducible protein-10 (IP10) (MIG: r = 0.6527, p = 0.0114; IP-10: r = 0.6967, p = 0.0056; IP-10+MIG: r = 0.7055, p = 0.0048). During follow-up 30 individuals were placed on ARVs and 4 progressed to active TB. Fluctuations in SFC did not correlate with CD4 count, viral load, treatment initiation, or progression to active TB. The RD1-Elispot appears to have limited value in this setting

    A molecular assay for sensitive detection of pathogen-specific T-cells.

    Get PDF
    Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR) for two reporters--monokine-induced by IFN-γ (MIG) and the IFN-γ inducible protein-10 (IP10). We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB) specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10)-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001). Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL) volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings

    S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis

    Get PDF
    Rationale: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. Objectives: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. Methods: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. Measurements and Main Results: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. Conclusions: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB

    TRAV1-2<sup>+</sup> CD8<sup>+</sup> T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis

    Get PDF
    Mucosal-associated invariant T (MAIT) cells typically express a TRAV1-2+ semi-invariant TCRα that enables recognition of bacterial, mycobacterial, and fungal riboflavin metabolites presented by MR1. MAIT cells are associated with immune control of bacterial and mycobacterial infections in murine models. Here, we report that a population of pro-inflammatory TRAV1-2+ CD8+ T cells are present in the airways and lungs of healthy individuals and are enriched in bronchoalveolar fluid of patients with active pulmonary tuberculosis (TB). High-throughput T cell receptor analysis reveals oligoclonal expansions of canonical and donor-unique TRAV1-2+ MAIT-consistent TCRα sequences within this population. Some of these cells demonstrate MR1-restricted mycobacterial reactivity and phenotypes suggestive of MAIT cell identity. These findings demonstrate enrichment of TRAV1-2+ CD8+ T cells with MAIT or MAIT-like features in the airways during active TB and suggest a role for these cells in the human pulmonary immune response to Mycobacterium tuberculosis

    Diagnosing latent tuberculosis in high-risk individuals: rising to the challenge in high-burden areas.

    No full text
    A key challenge to greater progress in tuberculosis (TB) control is the reservoir of latent TB infection (LTBI), which represents a huge long-lived reservoir of potential TB disease. In parts of Africa, as many as 50% of 15-year-olds and 77%-89% of adults have evidence of LTBI. A second key challenge to TB control is the human immunodeficiency virus (HIV)-associated TB epidemic, and Africa alone accounts for one-quarter of the global burden of HIV-associated TB. HIV co-infection promotes both reactivation TB from LTBI and rapidly progressive primary TB following recent exposure to Mycobacterium tuberculosis. Preventing active TB and tackling latent infection in addition to the Directly Observed Treatment, Short-Course (DOTS) strategy could improve TB control in high-burden settings, especially where there is a high prevalence of HIV co-infection. Current strategies include intensified case finding (ICF), TB infection control, antiretroviral therapy (ART), and isoniazid preventive therapy (IPT). Although ART has been widely rolled out, ICF and IPT have not. A key factor limiting the rollout and effectiveness of IPT and ICF is the limitations of existing tools to both diagnose LTBI and identify those persons most at risk of progressing to active TB. In this review, we examine the obstacles and consider current progress toward the development of new tools to address this pressing global problem

    Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with HIV☆☆☆★

    Get PDF
    In recent years, chronic immune activation and systemic inflammation have emerged as hallmarks of HIV disease progression and mortality. Several studies indicate that soluble inflammatory biomarkers (sCD14, IL-6, IL-8, CRP and hyaluronic acid), as well as surface markers of T-cell activation (CD38, HLA-DR) independently predict progression to AIDS and mortality in HIV-infected individuals. While co-infections have been shown to contribute to immune activation, the impact of latent tuberculosis infection (LTBI), which is widely endemic in the areas most affected by the global AIDS epidemic, has not been evaluated. We hypothesized that both active and latent states of Mycobacterium tuberculosis co-infection contribute to elevated immune activation as measured by these markers. In HIV-infected individuals with active, but not latent TB, we found elevated levels of soluble markers associated with monocyte activation. Interestingly, T-cell activation was elevated individuals with both latent and active TB. These results suggest that in the highly TB- and HIV-endemic settings of southern Africa, latent TB-associated T-cell activation may contribute to HIV disease progression and exacerbate the HIV epidemic. In addition, our findings indicate that aggressive campaigns to treat LTBI in HIV-infected individuals in high-burden countries will not only impact TB rates, but may also slow HIV progression. Significance Latent tuberculosis, which affects an estimated 1/3 of the world's population, has long been thought to be a relatively benign, quiescent state of M. tuberculosis infection. While HIV co-infection is known to exacerbate M. tuberculosis infection and increase the risk of developing active TB, little is known about the potential effect of latent TB infection on HIV disease. This study shows that HIV-infected individuals with both active and latent TB have elevated levels of inflammation and immune activation, biomarkers of HIV disease progression and elevated risk of mortality. These results suggest that, in the context of HIV, latent TB infection may be associated with increased risk of progression to AIDS and mortality
    corecore