20 research outputs found
El complejo volcánico cerros Bravos, región de Maricunga, Chile: Geología, alteración hidrotermal y mineralización
El Complejo Volcánico Cerros Bravos (Oligoceno-Mioceno) es un conjunto de lavas y domos dacítico-andesíticos calcoalcalinos de gran extensión (450 km2) ubicado a unos 140 km al este de Copiapó, Chile, que integra la Franja de Maricunga, cadena volcánica neógena que representa un arco pluto-volcánico de margen continental. Los análisis radiométricos K-Ar señalan que el complejo volcánico Cerros Bravos estuvo activo entre los 26-18 Ma (Oligoceno-Mioceno inferior) en tanto que el complejo La Coipa registra actividad hasta el Mioceno medio (15 Ma), y desde allí hacia el sur los centros volcánicos presentan edades entre 16 y 6 Ma. El complejo hospeda la zona de alteración hidrotermal del Prospecto Esperanza, sistema epitermal del tipo sulfato-ácido con mineralización de oro y plata controlada estructuralmente y asociada a una intensa silicificación y argilización con calcolinita, alunita y jarosita, con edades radiométricas K-Ar entre 20-18 Ma. Los estudios isotópicos de Pb realizados en rocas y sulfuros de los depósitos de la Franja de Maricunga indican que las rocas ígneas del Oligoceno-Mioceno son una mezcla de manto subcortical máfico o material cortical y material cortical radiogénico. El Pb en los depósitos de metales preciosos de la franja es dominado por una fuente como las rocas ígneas huéspedes y, localmente, otras rocas huéspedes (sedimentarias triásicas) pueden haber contribuido con Pb durante la circulación hidrotermal en ambiente cercano a la superficie. La aplicación de las metodologías de la teledetección en imágenes Landsat TM en la zona de Maricunga demostró ser una herramienta eficaz para la exploración ya que permitió destacar perfectamente las zonas de alteración hidrotermal presentes en el área y la elaboración de mapas de alta confiabilidad a escala regional
Summary of Pb isotopic compositions in epitermal precios metal deposits, Orcopampa área of Southern Peru, Berenguela area of Western Bolivia, and the Maricunga belt in north-central Chile
The Mesozoic and Cenozoic Central Andes are divided into three Pb isotopic provinces, based upon the Pb isotopic compositions of ore minerals (MacFarlane et al., 1990). Macfarlane et al., 0990), furthermore, argue that the Pb isotopic compositions of the ore minerals reílect those of the igneous rocks associated with the deposits. Province I lies along the coast of Perú, Chile, and westernmost Bolivia. Mcsozoic and early Cenozoic volcapic and plutonic ares built upon a rifted and thinned continental margin dominate this province. Three subprovinces are distinguished based upon slight differences in Pb isotopic compositions. Province la includes northern and central Chile south of 19°S; province lb includes central Perú north of 13°S; whereas province le includes central and southern Perú between the two other subprovinces. Province II lies in the high Andes of central Perú and, perhaps, in northern Chile and Argentina, where miogeoclinal sedimentary rocks crop out and the crust underwent a lower magnitude of extension in the early Mesozoic. This region generally represents a back-arc position relative to the Mesozoic and early Cenozoic magmatic ares, and extensive magmatism related to the Andean cycle has only occurred since the Oligocene. Paleozoic ares are the dominant basement in this province. Province III lies in the Cordillera Oriental and Altiplano of Perú and Bolivia where Paleozoic, Mesozoic, and Cenozoic sedimentary rocks are multiply dcformed by thrust faults. Magma ti-e episodes of Triassic to Jurassic and Oligocene to Miocene age are documented. Proterozoic rocks of the Brazilian shicld are underthrust beneath the Cordillera Oriental, with the youngest shortcning episode beginning in the Oligocene. Province III is subdivided into two subprovinces: ma lies in southeastern Perú where both episodes of magmatism occurred, whereas IIIb lies in Bolivia where magmatism is primarily of Oligocene and Miocene age. Pb isotopic compositions for Province I are slightly less radiogenic than those from province II, whereas province III isotopic compositions are much more varied with consistently higher 207Pb/ 204pb and 208pb/204pb at a given 206pb/ 204pb_Province I Pb isotopic compositions (206pb/ 204pb =18.21-18.82; 207Pb/2<YíPb = 15.55-15.69; 2º8Pb/2º4Pb = 38.11-38.95) overlap with and extend below the average crustal growth curve of Staccy and Kramers (1975) on the uranogenic diagram (207pb/204pb versus 206pb/204Pb). Province lT Pb isotopic compositions (206pb/2<Yípb = 18.76-18.90; 207pb/204pb 15.62-15.73; 208pb/204pb 38.63-39.16) and Province III Pb isotopic compositions (206pb/204Pb 17.97-25.18; 207pb/204pb 15.51-16.00; 208pb/20/4pb 37.71-40.07) lie above the average crustal growth curve on the same diagram. The Pb isotopic compositions from these last two provinces require contribution from a high mu (238U/204pb) Proterozoic or Archean source. On the thorogcnic Pb isotopic variation diagram (208Pb/ 204Pb versus 206pb/204pb), isotopic compositions for province I, 11, and IIIa scatter along the average crustal growth curve of Stacey and Kramers (1975-) indicating that a time averaged Th/U ratio - 4 (the average cristal value) characterizes the Central Andes. Pb isotopic compositions for province IIIb are the most radiogenic and also the most heterogeneous. The variable radiogenic Pb isotopic compositions of province III suggcst heterogeneous upper cristal sources, whereas the isotopic compositions of province I probably reflect a mafic cristal lithospheric source, probably modified by subduction processcs. Province II isotopic compositions conceivably represent a mix betwecn the two model reservoirs
Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El teniente ore deposit, chilean andes: Constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas
Intrusive rocks related to porphyry copper mineralization are part of the wide diversity of subduction-related, mantle-derived, igneous rocks generated in convergent margin settings. What differentiates them from barren igneous rocks results ultimately from the multi-component and multi-stage processes that condition magma composition in these settings. Unfortunately, the petrogenetic history is largely obscured by the pervasive alteration that affects rocks in these deposits. We address this issue through the study of zircon grains from El Teniente, one of the largest known porphyry Cu-Mo deposits in the world. El Teniente belongs to the Miocene-Pliocene Cu-Mo belt of the Central Chilean Andes, which formed in a short timespan during the Cenozoic constructive period of the orogen. Previously U-Pb dated zircon grains were selected for re-examination of their morphological characteristics and in situ analysis of chemical (rare earth element, Hf, Y and Ti contents) and isotopic (Hf, O) composition. They are from six intermediate to felsic syn- to late-mineralization, intrusive units covering a timespan of ~1·6 Myr. The El Teniente zircons have compositional and morphological characteristics indicating crystallization from a series of cogenetic melts. However, a minor hydrothermal imprint is documented in the presence of crystals with mottled surfaces that correspond to thin high U-Th overgrowth rims (low-luminescent features in cathodoluminescence images). In terms of any other chemical and isotopic characteristic, these are indistinguishable from the main mineral populations. Zircons define morphological and chemical trends reflecting an evolution towards more differentiated magma compositions, lower crystallization temperatures and increased cooling rates with decreasing age of intrusion. Hf and O isotopic compositions are remarkably uniform at grain, sample and deposit scale. This, together with the general absence of older inherited zircon components, the lack of correlations between isotopic signature and whole-rock composition and high initial ε Hf values (total average 7·4 ± 1·2; 2σ), rules out involvement of any significant crustal contamination in the genesis of the El Teniente magmas. The Hf isotopic composition indicates a relatively juvenile source, but with some crustal residence time. The δ 18O Zrc weighted mean of 4·76 ± 0·12‰ (2σ; 61 analyses) is at the lower limit of the normal mantle zircon range of 5·3 ± 0·6‰ (2σ), and might reflect crystallization from low- 18O magmas. Hf isotopic compositions have a restricted range in initial ε Hf values between +6 and +10, identical to preceding Cenozoic barren magmatic activity in Central Chile. These igneous rocks are the product of nearly 25 Myr of subduction-related magmatic activity, developed under contrasting tectonic regimes and margin configurations. This suggests a primary control of the isotopic signature by a stable long-lived MASH-type (melting, assimilation, storage and homogenization) reservoir in the deep lithosphere. In the context of the Cenozoic evolution of Central Chile we argue that dehydration melting in the enriched MASH reservoir occurred as a consequence of increasing crustal thickness, and was prompted by a high-temperature thermal regime resulting from long-lasting preceding magmatism. This process can also fractionate O to generate low- 18O magmas. At the time of El Teniente formation, dehydration melting occurred coevally with arc migration, which probably influenced the fertility of the magmas by increasing the melt component derived from this process relative to the component derived from primary basalt differentiation. At a regional scale, such reactions are expected to occur as a consequence of progressive crustal thickening during the constructive period of the Andes, and can explain the simultaneous generation of porphyry deposits in the Miocene-Pliocene Cu-Mo belt of Central Chile
The Port Mouton Shear Zone : intersection of a regional fault with a crystallizing granitoid pluton
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system.19 page(s
Late Paleozoic-Early Triassic magmatism on the western margin of Gondwana: Collahuasi area, Northern Chile
The basement in the 'Altiplano' high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous suite crops out in the Collahuasi area and forms the backbone of most of the high Andes from latitude 20° to 22°S. Rocks of the Collahuasi Group and correlative formations form an extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru. Thirteen new SHRIMP U-Pb zircon ages from the Collahuasi area document a bimodal timing for magmatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper-Mo porphyry mineralization is related to the younger igneous event. Initial Hf isotopic ratios for the ~ 300 Ma zircons range from about - 2 to + 6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial Hf values ranging from + 2 to + 6, suggestive of a mixture with a more depleted component. Limited whole rock 144Nd/143Nd and 87Sr/86Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures
El complejo volcánico cerros Bravos, región de Maricunga, Chile: Geología, alteración hidrotermal y mineralización
El Complejo Volcánico Cerros Bravos (Oligoceno-Mioceno) es un conjunto de lavas y domos dacítico-andesíticos calcoalcalinos de gran extensión (450 km2) ubicado a unos 140 km al este de Copiapó, Chile, que integra la Franja de Maricunga, cadena volcánica neógena que representa un arco pluto-volcánico de margen continental. Los análisis radiométricos K-Ar señalan que el complejo volcánico Cerros Bravos estuvo activo entre los 26-18 Ma (Oligoceno-Mioceno inferior) en tanto que el complejo La Coipa registra actividad hasta el Mioceno medio (15 Ma), y desde allí hacia el sur los centros volcánicos presentan edades entre 16 y 6 Ma. El complejo hospeda la zona de alteración hidrotermal del Prospecto Esperanza, sistema epitermal del tipo sulfato-ácido con mineralización de oro y plata controlada estructuralmente y asociada a una intensa silicificación y argilización con calcolinita, alunita y jarosita, con edades radiométricas K-Ar entre 20-18 Ma. Los estudios isotópicos de Pb realizados en rocas y sulfuros de los depósitos de la Franja de Maricunga indican que las rocas ígneas del Oligoceno-Mioceno son una mezcla de manto subcortical máfico o material cortical y material cortical radiogénico. El Pb en los depósitos de metales preciosos de la franja es dominado por una fuente como las rocas ígneas huéspedes y, localmente, otras rocas huéspedes (sedimentarias triásicas) pueden haber contribuido con Pb durante la circulación hidrotermal en ambiente cercano a la superficie. La aplicación de las metodologías de la teledetección en imágenes Landsat TM en la zona de Maricunga demostró ser una herramienta eficaz para la exploración ya que permitió destacar perfectamente las zonas de alteración hidrotermal presentes en el área y la elaboración de mapas de alta confiabilidad a escala regional