79 research outputs found

    Creation of the recombinant tissue plasminogen activator (rt-PA) image and its influence on practice habits

    Get PDF
    AbstractAmerican physicians have commonly practiced thrombolytic therapy for acute myocardial infarction with the recombinant form of tissue plasminogen activator (rt-PA), although its cost is much higher than that of streptokinase. The greater popularity of rt-PA is based on the belief that it is a more effective and a safer drug for achieving myocardial salvage and mortality reduction. However, a series of studies testing this assumption have not substantiated its greater efficacy or safety with respect to not only streptokinase but also urokinase and anisoylated plasminogen-streptokinase activator complex (APSAC).This editorial reviews the sequence of events that led to the creation of the rt-PA image, the mistaken premises on which it was based and the questions that need to be addressed if we are to strengthen the scientific method for evaluating similar types of drugs and its influence on practice habits including the costs to the health system

    Plasmic Degradation of Crosslinked Fibrin CHARACTERIZATION OF NEW MACROMOLECULAR SOLUBLE COMPLEXES AND A MODEL OF THEIR STRUCTURE

    Get PDF
    A B S T R A C T Crosslinked fibrin was digested by plasmin, and three soluble complexes larger than DD/E were purified and characterized. After gel filtration chromatography, the purified complexes were shown to have molecular weights of 465,000, 703,000, and 850,000, as determined by equilibrium sedimentation. Each of the complexes was dissociated into two or more fragments by SDS-polyacrylamide gel electrophoresis. The structure of these subunit fragments was deduced from determinations of their molecular weights and polypeptide chain composition and from known sites of plasmin cleavage of fibrin. Fragments larger than DD have been identified that contain intact yry crosslinks as well as fragments resulting from cleavages at or near this site. The former include DY (mol wt 247,000), YY (mol wt 285,000), DXD (mol wt 461,000), and YXD (mol wt 500,000); and the latter include fragments XD (mol wt 334,000) and XY (mol wt 391,000). A schematic model was developed to explain the structure of the large noncovalently bound complexes based on their molecular weight and observed component fragments. Our scheme supports the twostranded half-staggered overlap model as the basic unit of fibrin structure, in which each complex consists of fragments from two adjacent complementary antiparallel fibrin strands. The smallest derivative, complex 1, is the DD/E complex; complex 2 contains apposed DY and YD fragments, and complex 3 consists of fragments DXD and YY. Complex 4 is less wellcharacterized, but its intact structure is projected to consist of YXD and DXY fragments from adjacent fibrin strands. Each complex is heterogeneous in subunit composition, reflecting additional plasmin cleavages within and/or adjacent to its theoretical boundaries. Since most ofthe protein initially released into solution from degrading fibrin is as complexes larger than DD/E

    Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-arterial (IA) administration of rt-PA for ischemic stroke has the potential for greater thrombolytic efficacy, especially for a large thrombus in the M1 or M2 segment of the middle cerebral artery (MCA). Intracranial hemorrhage (ICH) is a concern with IA or intravenous (IV) administration especially as the therapeutic window is extended. However, because IA administration delivers a higher local concentration of agent, the incidence and severity of ICH may be greater than with similar doses IV. We investigated the safety of rt-PA administration by IA compared to IV infusion following 6 hours of MCA occlusion (MCAo) with reflow in the spontaneously hypertensive rat (SHR).</p> <p>Methods</p> <p>Male SHRs were subjected to 6 hours MCAo with 18 hours reflow using a snare ligature model. They were treated with IA saline, IA rt-PA (1, 5, 10, 30 mg/kg), or IV rt-PA (10 and 30 mg/kg) by a 10 to 60 minute infusion beginning approximately 1 minute before reflow. The rats were recovered for 24 hours after MCAo onset at which time Bleeding Score, infarct volume, and Modified Bederson Score were measured.</p> <p>Results</p> <p>Greater hemorrhagic transformation occurred with 10 and 30 mg/kg rt-PA administered IA than IV. The IV 10 mg/kg rt-PA dosage induced significantly less bleeding than did the 1 or 5 mg/kg IA groups. No significant increase in infarct volume was observed after IA or IV treatment. Rats treated with 30 mg/kg rt-PA by either the IA or IV route had greater neurological dysfunction compared to all other groups.</p> <p>Conclusions</p> <p>Administration of rt-PA by the IA route following 6 hours of MCAo results in greater ICH and worse functional recovery than comparable dosages IV. Significantly greater bleeding was observed when the IA dose was a tenth of the IV dose. The increased bleeding did not translate in larger infarct volumes.</p

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie
    corecore