1,985 research outputs found

    Should we use closed or open infusion containers for prevention of bloodstream infections?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospitalized patients in critical care settings are at risk for bloodstream infections (BSI). Most BSIs originate from a central line (CL), and they increase length of stay, cost, and mortality. Open infusion containers may increase the risk of contamination and administration-related (CLAB) because they allow the entry of air into the system, thereby also providing an opportunity for microbial entry. Closed infusion containers were designed to overcome this flaw. However, open infusion containers are still widely used throughout the world.</p> <p>The objective of the study was to determine the effect of switching from open (glass, burettes, and semi-rigid) infusion containers to closed, fully collapsible, plastic infusion containers (Viaflex<sup>®</sup>) on the rate and time to onset of central line-associated bloodstream infections CLABs.</p> <p>Methods</p> <p>An open label, prospective cohort, active healthcare-associated infection surveillance, sequential study was conducted in four ICUs in Mexico. Centers for Disease Control National Nosocomial Infections Surveillance Systems definitions were used to define device-associated infections.</p> <p>Results</p> <p>A total of 1,096 adult patients who had a central line in place for >24 hours were enrolled. The CLAB rate was significantly higher during the open versus the closed container period (16.1 versus 3.2 CLAB/1000 central line days; RR = 0.20, 95% CI = 0.11-0.36, P < 0.0001). The probability of developing CLAB remained relatively constant in the closed container period (1.4% Days 2-4 to 0.5% Days 8-10), but increased in the open container period (4.9% Days 2-4 to 5.4% Days 8-10). The chance of acquiring a CLAB was significantly decreased (81%) in the closed container period (Cox proportional hazard ratio 0.19, P < 0.0001). Mortality was statistically significantly lower during the closed versus the open container period (23.4% versus 16.1%; RR = 0.69, 95% CI = 0.54-0.88, P < 0.01).</p> <p>Conclusions</p> <p>Closed infusion containers significantly reduced CLAB rate, the probability of acquiring CLAB, and mortality.</p

    Robustifying Experimental Tracer Design for13C-Metabolic Flux Analysis

    Get PDF
    13C metabolic flux analysis (MFA) has become an indispensable tool to measure metabolic reaction rates (fluxes) in living organisms, having an increasingly diverse range of applications. Here, the choice of the13C labeled tracer composition makes the difference between an information-rich experiment and an experiment with only limited insights. To improve the chances for an informative labeling experiment, optimal experimental design approaches have been devised for13C-MFA, all relying on some a priori knowledge about the actual fluxes. If such prior knowledge is unavailable, e.g., for research organisms and producer strains, existing methods are left with a chicken-and-egg problem. In this work, we present a general computational method, termed robustified experimental design (R-ED), to guide the decision making about suitable tracer choices when prior knowledge about the fluxes is lacking. Instead of focusing on one mixture, optimal for specific flux values, we pursue a sampling based approach and introduce a new design criterion, which characterizes the extent to which mixtures are informative in view of all possible flux values. The R-ED workflow enables the exploration of suitable tracer mixtures and provides full flexibility to trade off information and cost metrics. The potential of the R-ED workflow is showcased by applying the approach to the industrially relevant antibiotic producer Streptomyces clavuligerus, where we suggest informative, yet economic labeling strategies

    Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6.

    Get PDF
    Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival

    CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes

    Get PDF
    CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene

    Reducing Concurrent Sexual Partnerships Among Blacks in the Rural Southeastern United States: Development of Narrative Messages for a Radio Campaign

    Get PDF
    In the United States, heterosexual transmission of HIV infection is dramatically higher among Blacks than among Whites. Overlapping (concurrent) sexual partnerships promote HIV transmission. The authors describe their process for developing a radio campaign (Escape the Web) to raise awareness among 18–34-year-old Black adults of the effect of concurrency on HIV transmission in the rural South. Radio is a powerful channel for the delivery of narrative-style health messages. Through six focus groups (n = 51) and 42 intercept interviews, the authors explored attitudes toward concurrency and solicited feedback on sample messages. Men were advised to (a) end concurrent partnerships and not to begin new ones; (b) use condoms consistently with all partners; and (c) tell others about the risks of concurrency and benefits of ending concurrent partnerships. The narrative portrayed risky behaviors that trigger initiation of casual partnerships. Women were advised to (a) end partnerships in which they are not their partner’s only partner; (b) use condoms consistently with all partners; and (c) tell others about the risks of concurrency and benefits of ending concurrent partnerships. Messages for all advised better modeling for children

    Maternal and neonatal outcomes by labor onset type and gestational age.

    Get PDF
    OBJECTIVE: We sought to determine maternal and neonatal outcomes by labor onset type and gestational age. STUDY DESIGN: We used electronic medical records data from 10 US institutions in the Consortium on Safe Labor on 115,528 deliveries from 2002 through 2008. Deliveries were divided by labor onset type (spontaneous, elective induction, indicated induction, unlabored cesarean). Neonatal and maternal outcomes were calculated by labor onset type and gestational age. RESULTS: Neonatal intensive care unit admissions and sepsis improved with each week of gestational age until 39 weeks (P \u3c .001). After adjusting for complications, elective induction of labor was associated with a lower risk of ventilator use (odds ratio [OR], 0.38; 95% confidence interval [CI], 0.28-0.53), sepsis (OR, 0.36; 95% CI, 0.26-0.49), and neonatal intensive care unit admissions (OR, 0.52; 95% CI, 0.48-0.57) compared to spontaneous labor. The relative risk of hysterectomy at term was 3.21 (95% CI, 1.08-9.54) with elective induction, 1.16 (95% CI, 0.24-5.58) with indicated induction, and 6.57 (95% CI, 1.78-24.30) with cesarean without labor compared to spontaneous labor. CONCLUSION: Some neonatal outcomes improved until 39 weeks. Babies born with elective induction are associated with better neonatal outcomes compared to spontaneous labor. Elective induction may be associated with an increased hysterectomy risk

    Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.

    Get PDF
    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance

    The human brainome: network analysis identifies \u3ci\u3eHSPA2\u3c/i\u3e as a novel Alzheimer’s disease target

    Get PDF
    Our hypothesis is that changes in gene and protein expression are crucial to the development of late-onset Alzheimer’s disease. Previously we examined how DNA alleles control downstream expression of RNA transcripts and how those relationships are changed in late-onset Alzheimer’s disease. We have now examined how proteins are incorporated into networks in two separate series and evaluated our outputs in two different cell lines. Our pipeline included the following steps: (i) predicting expression quantitative trait loci; (ii) determining differential expression; (iii) analysing networks of transcript and peptide relationships; and (iv) validating effects in two separate cell lines. We performed all our analysis in two separate brain series to validate effects. Our two series included 345 samples in the first set (177 controls, 168 cases; age range 65–105; 58% female; KRONOSII cohort) and 409 samples in the replicate set (153 controls, 141 cases, 115 mild cognitive impairment; age range 66–107; 63% female; RUSH cohort). Our top target is heat shock protein family A member 2 (HSPA2), which was identified as a key driver in our two datasets. HSPA2 was validated in two cell lines, with overexpression driving further elevation of amyloid-B40 and amyloid-B42 levels in APP mutant cells, as well as significant elevation of microtubule associated protein tau and phosphorylated-tau in a modified neuroglioma line. This work further demonstrates that studying changes in gene and protein expression is crucial to understanding late onset disease and further nominates HSPA2 as a specific key regulator of late-onset Alzheimer’s disease processes

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore