33 research outputs found

    Analysis of the proximal promoter of the human colon-specific B4GALNT2 (Sda synthase) gene: B4GALNT2 is transcriptionally regulated by ETS1

    Get PDF
    13siopenBackground: The Sda antigen and corresponding biosynthetic enzyme B4GALNT2 are primarily expressed in normal colonic mucosa and are down-regulated to a variable degree in colon cancer tissues. Although their expression profile is well studied, little is known about the underlying regulatory mechanisms. Methods: To clarify the molecular basis of Sda expression in the human gastrointestinal tract, we investigated the transcriptional regulation of the human B4GALNT2 gene. The proximal promoter region was delineated using luciferase assays and essential trans-acting factors were identified through transient overexpression and silencing of several transcription factors. Results: A short cis-regulatory region restricted to the −72 to +12 area upstream of the B4GALNT2 short-type transcript variant contained the essential promoter activity that drives the expression of the human B4GALNT2 regardless of the cell type. We further showed that B4GALNT2 transcriptional activation mostly requires ETS1 and to a lesser extent SP1. Conclusions: Results presented herein are expected to provide clues to better understand B4GALNT2 regulatory mechanisms.openWavelet-Vermuse C.; Groux-Degroote S.; Vicogne D.; Cogez V.; Venturi G.; Trinchera M.; Brysbaert G.; Krzewinski-Recchi M.-A.; Bachir E.H.; Schulz C.; Vincent A.; Van Seuningen I.; Harduin-Lepers A.Wavelet-Vermuse, C.; Groux-Degroote, S.; Vicogne, D.; Cogez, V.; Venturi, G.; Trinchera, M.; Brysbaert, G.; Krzewinski-Recchi, M. -A.; Bachir, E. H.; Schulz, C.; Vincent, A.; Van Seuningen, I.; Harduin-Lepers, A

    Alkynyl monosaccharide analogues as a tool for evaluating Golgi glycosylation efficiency: application to Congenital Disorders of Glycosylation (CDG)

    Get PDF
    The visualization of Golgi glycosylation defects in patients' cells with Congenital Disorders of Glycosylation (CDG) is challenging and necessitates the use of cumbersome glycan analysis methods that are barely adapted to clinical research. We show here that metabolic labelling of patient cells with alkyne-tagged sialic-acid (SiaNAl) enables an easy and reliable readout assay for the detection of CDG occurrence. It also provides valuable clues regarding the pathological processes by assessing the distribution of sialic acid analogues within the cells.status: publishe

    Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses.

    Get PDF
    International audienceSialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes' evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I-ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions
    corecore