699 research outputs found

    Four Years Later: How the 2006 Amendments to the Federal Rules Have Reshaped the E-Discovery Landscape and are Revitalizing the Civil Justice System

    Get PDF
    The 2006 amendments to the Federal Rules of Civil Procedure, which were enacted to address the potentially immense burden involved in the discovery of electronically-stored information (“ESI”), set in motion a process that is revitalizing the primary purpose of the Federal Rules of Civil Procedure adopted nearly seventy years earlier: “to secure the just, speedy, and inexpensive determination of every action and proceeding.” One of the principal means through which the Federal Rules of Civil Procedure achieve this purpose is by allowing for the discovery of “any nonprivileged matter that is relevant to any party’s claim or defense.” The reasoning behind these liberal discovery rules is that once parties know, ostensibly through discovery, their respective positions in a dispute, they will reach a resolution more quickly and efficiently

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Phase transitions and configuration space topology

    Full text link
    Equilibrium phase transitions may be defined as nonanalytic points of thermodynamic functions, e.g., of the canonical free energy. Given a certain physical system, it is of interest to understand which properties of the system account for the presence of a phase transition, and an understanding of these properties may lead to a deeper understanding of the physical phenomenon. One possible approach of this issue, reviewed and discussed in the present paper, is the study of topology changes in configuration space which, remarkably, are found to be related to equilibrium phase transitions in classical statistical mechanical systems. For the study of configuration space topology, one considers the subsets M_v, consisting of all points from configuration space with a potential energy per particle equal to or less than a given v. For finite systems, topology changes of M_v are intimately related to nonanalytic points of the microcanonical entropy (which, as a surprise to many, do exist). In the thermodynamic limit, a more complex relation between nonanalytic points of thermodynamic functions (i.e., phase transitions) and topology changes is observed. For some class of short-range systems, a topology change of the M_v at v=v_t was proved to be necessary for a phase transition to take place at a potential energy v_t. In contrast, phase transitions in systems with long-range interactions or in systems with non-confining potentials need not be accompanied by such a topology change. Instead, for such systems the nonanalytic point in a thermodynamic function is found to have some maximization procedure at its origin. These results may foster insight into the mechanisms which lead to the occurrence of a phase transition, and thus may help to explore the origin of this physical phenomenon.Comment: 22 pages, 6 figure

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Get PDF
    Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. ÎŽÂčÂłC values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS

    Environmentally clean access to Antarctic subglacial aquatic environments

    Get PDF
    Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets

    Dopant Spatial Distributions: Sample Independent Response Function And Maximum Entropy Reconstruction

    Full text link
    We demonstrate the use of maximum entropy based deconvolution to reconstruct boron spatial distribution from the secondary ion mass spectrometry (SIMS) depth profiles on a system of variously spaced boron ÎŽ\delta-layers grown in silicon. Sample independent response functions are obtained using a new method which reduces the danger of incorporating real sample behaviour in the response. Although the original profiles of different primary ion energies appear quite differently, the reconstructed distributions agree well with each other. The depth resolution in the reconstructed data is increased significantly and segregation of boron at the near surface side of the ÎŽ\delta-layers is clearly shown.Comment: 5 two-columne pages, 3 postscript figures, to appear in Phys. Rev. B1

    Beidseitige Informationsasymmetrien in der Arzt-Patient-Beziehung: Implikationen fĂŒr die GKV

    Full text link
    Die vorliegende Arbeit analysiert die Interdependenzen und Informationsstrukturen im Gesundheitswesen. Hauptansatzpunkt ist die beidseitig asymmetrische Information zwischen Arzt und Patient. Der Patient kann i. d. R. weder die Wirkung der Leistungen des Arztes genau einordnen, noch besitzt der Arzt genauere Informationen ĂŒber das behandlungsbegleitende Verhalten des Patienten. Die Interdependenzen zwischen diesen Handlungen bestimmen das resultierende Gleichgewicht. Die EinfĂŒhrung einer Selbstbeteiligung fĂŒr den Patienten fĂŒhrt zu einer verbesserten Compliance, das Niveau der medizinischen Leistung hĂ€ngt von den Interdependenzen ab. Die Implikationen, die sich aus dem Modell ergeben, lassen auf ein Kommunikationsdefizit zwischen Arzt und Patient schließen. Eine StĂ€rkung der Compliance ist zum einen durch verbesserte Information des Arztes, zum anderen durch finanzielle Anreize, insbesondere durch die EinfĂŒhrung einer Selbstbeteiligung, möglich. Die Krankenkassen als ergĂ€nzender Sachwalter der Patienten können in der Arzt-Patient-Beziehung vor allem Aufgaben wie VertragsabschlĂŒsse ĂŒbernehmen, benötigen dazu jedoch mehr Gestaltungsfreiheit

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Get PDF
    Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. ÎŽÂčÂłC values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS
    • 

    corecore