43 research outputs found

    Development of Bioglass/PEEK Composite Coating by Cold Gas Spray for Orthopedic Implants

    Get PDF
    Cold gas spray (CGS) technology has allowed the development of biofunctional coatings composed of 45S5 and polyetheretherketone (PEEK). The combination of a bioactive glass material embedded in a polymeric matrix makes this composite an interesting material for orthopedic applications since this composite meets the biomechanical and biological requirements of an implant. In the present study, blends of bioactive glass 45S5 and PEEK powder with different granulometry and 45S5/PEEK ratio have been prepared. These mixtures of powders have been deposited onto PEEK substrates by CGS with the goal of incorporating a bioactive additive to the biocompatible polymer, which can improve the bone-implant interaction of PEEK. The deposition efficiency (DE) of the coatings has been evaluated, and from the results obtained, it was possible to conclude that DE is significantly affected by the granulometry and by the 45S5/PEEK ratio of the blends. By scanning electron microscopy (SEM) inspection, it was observed that the use of blends with high 45S5/PEEK ratio lead to the deposition of coatings with high content of 45S5. Finally, the friction behavior of the coatings was analyzed performing ball-on-disk tests and these experiments showed that the presence of glass particles has a beneficial role in the wear resistance

    Centrifugal Atomization of Glass-Forming Alloy Al86Ni8Y4.5La1.5

    Full text link
    Centrifugal atomization is a rapid solidification technique for producing metal powders. However, its wide application has been limited to the production of common metal powders and their corresponding alloys. Therefore, there is a lack of research on the production of novel materials such as metallic glasses using this technology. In this paper, aluminum-based glassy powders (Al86Ni8Y4.5La1.5) were produced by centrifugal atomization. The effects of disk speed, atomization gas, and particle size on the cooling rate and the final microstructure of the resulting powder were investigated. The powders were characterized using SEM and XRD, and the amorphous fractions of the atomized powder samples were quantified through DSC analysis. A theoretical model was developed to evaluate the thermal evolution of the atomized droplets and to calculate their cooling rate. The average cooling rate experienced by the centrifugally atomized powder was calculated to be approximately 7 × 105 Ks−1 for particle sizes of 32.5 ÎŒm atomized at 40,000 rpm in a helium atmosphere. Amorphous fractions from 60% to 70% were obtained in particles with sizes of up to 125 ÎŒm in the most favorable atomization conditions

    Improving the Wear and Corrosion Resistance of Maraging Part Obtained by Cold Gas Spray Additive Manufacturing

    Get PDF
    The use of the cold gas spray (CGS) process as a metal additive manufacturing (MAM) technique for metallic part production has been deeply studied recently, mainly due to its advantages over other MAM techniques. CGS MAM is a high-productivity technique with a very low level of particle oxidation, microstructural changes, phase transformations, or deleterious residual thermal stresses in the part. The use of CGS MAM to produce maraging parts represents a gain for the industry by saving machining time and preventing raw material waste. Its wear resistance and corrosion behavior were evaluated in this work and were compared with cermet coatings deposited by high-velocity oxy-fuel (HVOF) on the CGS MAM maraging. This work presents the innovative and effective combination of different thermal spraying processes and materials to obtain MAM maraging parts with higher wear resistance, evaluating abrasion, sliding, and water erosion wear type

    The influence of the powder characteristics on 316L stainless steel coatings sprayed by cold gas spray

    Get PDF
    Thermally sprayed 316L stainless steel coatings are commonly used on metallic structures due to their corrosion and wear resistance when compared to carbon steel. Cold Gas Spray (CGS) is a convenient thermal spray process to deposit 316L coatings, producing thick and very dense coatings, with almost no deleterious changes on the feedstock properties to the coating condition. The powder characteristics have influence on the microstructure of the coating, such as porosity and oxide contents, which alter its corrosion and wear behavior. CGS is an efficient technique to reduce the problems associated with material melting commonly found in other conventional thermal spray methods. In this work, different 316L powders, produced by different manufacturers, were deposited by CGS, applying the same equipment and parameters, with the objective to evaluate the relation between the powders' characteristics and coating properties. Their microstructure, adherence, hardness, as well as the performance on corrosion and wear testing were evaluated. The water atomized powders presented in general better results than gas atomized powders

    NOx Storage on BaTi0.8Cu0.2O3 Perovskite Catalysts: Addressing a Feasible Mechanism

    Get PDF
    The NOx storage mechanism on BaTi0.8Cu0.2O3 catalyst were studied using different techniques. The results obtained by XRD, ATR, TGA and XPS under NOx storage-regeneration conditions revealed that BaO generated on the catalyst by decomposition of Ba2TiO4 plays a key role in the NOx storage process. In situ DRIFTS experiments under NO/O2 and NO/N2 show that nitrites and nitrates are formed on the perovskite during the NOx storage process. Thus, it seems that, as for model NSR catalysts, the NOx storage on BaTi0.8Cu0.2O3 catalyst takes place by both "nitrite" and "nitrate" routes, with the main pathway being highly dependent on the temperature and the time on stream: (i) at T 350 °C, the catalyst activity for NO oxidation promotes NO2 generation and the nitrate formation

    BaTi1−xCuxO3 perovskites: The effect of copper content in the properties and in the NOx storage capacity

    Get PDF
    BaTi1−xCuxO3 perovskites have been prepared by the Pechini's sol-gel method and the effect of copper in the structural and physico-chemical properties of the perovskites and in the performance of the catalysts for NOx storage has been studied. XRD and Raman spectroscopy results indicate that all the copper containing catalysts present a distortion of the original tetragonal structure due to the incorporation of copper into the lattice. The XPS and H2-TPR results reveal that the copper catalysts, except for BaTiCu0,5 catalyst, present two copper species (with different electronic interaction with the perovskite) and active surface oxygen species. Additionally, it seems that the fraction of copper with a strong electronic interaction with the perovskite or incorporated into the perovskite structure increases with the copper content. The active sites created on the BaTi1−xCuxO3 perovskite surface bring to the catalysts activity for the NO to NO2 oxidation and for the NOx adsorption. The NOx storage capacity increases with the copper content and reaches a limit for the BaTiCu2 catalyst (300 ÎŒmol/g, at 420 °C) which is within the range of the values reported for the noble metal-based catalysts.The authors thank to Spanish Government (MINECO projectCTQ2012-030703) and to Generalitat Valenciana (project PROM-ETEOII/2014/010) for the financial support

    Centrifugal atomization of glass-forming alloy Al86Ni8Y4.5La1.5

    Get PDF
    This research was funded by the Agùncia de Gestió d’Ajuts Universitaris i de Recerca under grant number 2019 DI-19 and by the European Regional Development Fund in the framework of Programa FEDER de Catalunya 2014 2020 (COMRDI 16 1 0020). The author V. Albaladejo-Fuentes is a Serra-Hunter Fellow.(UB).Peer ReviewedPostprint (published version

    BaFe1−xCuxO3 Perovskites as Active Phase for Diesel (DPF) and Gasoline Particle Filters (GPF)

    Get PDF
    BaFe1−xCuxO3 perovskites (x = 0, 0.1, 0.3 and 0.4) have been synthetized, characterized and tested for soot oxidation in both Diesel and Gasoline Direct Injection (GDI) exhaust conditions. The catalysts have been characterized by BET, ICP-OES, SEM-EDX, XRD, XPS, H2-TPR and O2-TPD and the results indicate the incorporation of copper in the perovskite lattice which leads to: (i) the deformation of the initial hexagonal perovskite structure for the catalyst with the lowest copper content (BFC1), (ii) the modification to cubic from hexagonal structure for the high copper content catalysts (BFC3 and BFC4), (iii) the creation of a minority segregated phase, BaOx-CuOx, in the highest copper content catalyst (BFC4), (iv) the rise in the quantity of oxygen vacancies/defects for the catalysts BFC3 and BFC4, and (v) the reduction in the amount of O2 released in the course of the O2-TPD tests as the copper content increases. The BaFe1−xCuxO3 perovskites catalyze both the NO2-assisted diesel soot oxidation (500 ppm NO, 5% O2) and, to a lesser extent, the soot oxidation under fuel cuts GDI operation conditions (1% O2). BFC0 is the most active catalysts as the activity seems to be mainly related with the amount of O2 evolved during an. O2-TPD, which decreases with copper content

    Metal Knitting: A New Strategy for Cold Gas Spray Additive Manufacturing

    Full text link
    Cold Spray Additive Manufacturing (CSAM) is an emergent technique to produce parts by the additive method, and, like other technologies, it has pros and cons. Some advantages are using oxygen-sensitive materials to make parts, such as Ti alloys, with fast production due to the high deposition rate, and lower harmful residual stress levels. However, the limitation in the range of the parts' geometries is a huge CSAM con. This work presents a new conceptual strategy for CSAM spraying. The controlled manipulation of the robot arm combined with the proper spraying parameters aims to optimize the deposition efficiency and the adhesion of particles on the part sidewalls, resulting in geometries from thin straight walls, less than 5 mm thick, up to large bulks. This new strategy, Metal Knitting, is presented regarding its fundamentals and by comparing the parts' geometries produced by Metal Knitting with the traditional strategy. The Metal Knitting described here made parts with vertical sidewalls, in contrast to the 40 degrees of inclination obtained by the traditional strategy. Their mechanical properties, microstructures, hardness, and porosity are also compared for Cu, Ti, Ti6Al4V, 316L stainless steel, and Al

    Tailoring the properties of BaTi0.8Cu0.2O3 catalyst selecting the synthesis method

    Get PDF
    The effect of the synthesis method (hydrothermal and sol-gel) on the properties of BaTi0.8Cu0.2O3 perovskites as catalysts for NOx and soot removal has been analyzed. X-ray powder diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), ICP-AES, N2 adsorption at −196 °C, Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and temperature programmed reduction with hydrogen (H2-TPR) have been used for catalysts characterization. To test their catalytic activity, NOx storage and soot combustion temperature programmed reaction tests have been carried out. The results allow to conclude that the synthesis method determines the position of copper on the perovskite structure and, therefore, the catalytic applications. When the hydrothermal method is used the copper is highly dispersed on the perovskite surface, obtaining a catalyst with a high activity for the NO to NO2 oxidation reaction, which can be used as oxidation catalyst for soot removal. Nevertheless, using the sol-gel method, copper is incorporated into the perovskite structure and, consequently, the catalyst presents a high NOx storage capacity.The authors thank the Spanish government (MINECO project CTQ2015-64801-R) for the financial support and Vicente Albaladejo Fuentes thanks the University of Alicante for his Ph.D. grant
    corecore