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methods. 

- The location of copper in the catalyst depends on the synthesis method. 

- Cu-BTOsg, with Cu incorporated into the structure, presents a high NOx storage 

capacity. 

- Cu-BBOH, with CuO highly dispersed on the surface, shows a high activity for NO to 

NO2 oxidation. 
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Abstract 

The effect of the synthesis method (hydrothermal and sol-gel) on the properties of BaTi0.8Cu0.2O3 

perovskites as catalysts for NOx and soot removal has been analyzed. X-ray powder diffraction 

(XRD), X-ray Photoelectron Spectroscopy (XPS), ICP-AES, N2 adsorption at -196ºC, Raman 

spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and temperature 

programmed reduction with hydrogen (H2-TPR) have been used for catalysts characterization. 

To test their catalytic activity, NOx storage and soot combustion temperature programmed 

reaction tests have been carried out. 

The results allow to conclude that the synthesis method determines the position of copper on the 

perovskite structure and, therefore, the catalytic applications. When the hydrothermal method is 

used the copper is highly dispersed on the perovskite surface, obtaining a catalyst with a high 

activity for the NO to NO2 oxidation reaction, which can be used as oxidation catalyst for soot 

removal. Nevertheless, using the sol-gel method, copper is incorporated into the perovskite 

structure and, consequently, the catalyst presents a high NOx storage capacity 

 

 

Keywords: BaTiO3 perovskite, sol-gel method, hydrothermal method, NOx storage, diesel 

soot oxidation. 
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I. Introduction 

Barium titanate (BaTiO3) is one of the best known and currently used materials in ceramic and 

electronic industries due to its excellent dielectric, ferroelectric, and piezoelectric properties, 

which come from its unique perovskite structure (ABO3) [1–3]. BaTiO3 has also been used as 

catalyst for oxidation and dry reforming of methane [4–6], for NOx reduction [7], as 

photocatalyst for hydrogen production [8] and for toluene degradation [9] and, finally, its 

properties have been checked for biomedical applications [10,11]. The extensive use of 

perovskite-type mixed-metal oxides as catalysts and/or as catalyst supports is due to their ability 

to provide high (lattice) oxygen mobility and also high structural stability [12]. The performance 

of BaTiO3 depends mainly on the crystal structure, shape, size, stoichiometry, homogeneity and 

surface properties, which are determined by the synthesis method [7,13]. 

To prepare BaTiO3, a wide variety of synthetic methods have been proposed, including 

conventional solid-state synthesis [14], co-precipitation [15], micro-emulsion method [16–18], 

spray pyrolysis [19], oxalate route [20], hydrothermal method [21–26], microwave-hydrothermal 

method [27,28], and sol–gel method [1,29,30] among others. The conventional solid-state 

synthesis typically involves high-temperature calcinations (1200°C) of a BaCO3 and TiO2 

powder mixture, which often results in low purity and polydispersity of the final structure due to 

the high reaction temperature and heterogeneous solid-phase reactions [14]. Therefore, the most 

popular methods for preparing BaTiO3 perovskites are low temperature wet-chemistry methods, 

such as hydrothermal and sol–gel. 

The sol–gel method includes a first step where elemental mixing is achieved, followed by a 

firing step to burn off the complexing ligands and to induce crystallinity, therefore, the catalyst 
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preparation using a sol–gel method is a complex process. However, it presents the following 

advantages: i) avoids the materials contamination, ii) allows a better shape control, iii) requires 

low capital investment and iv) can be compatible with continuous manufacturing techniques for 

the production of powders [29,31,32]. 

The hydrothermal crystallization of barium titanate is performed from aqueous mixtures of 

barium and titanium precursor salts. This process is carried out at pH values higher than 7 and 

temperatures above 80ºC for periods of time ranging from hours to a few days. Compared to 

conventional methods, the hydrothermal method is a low-temperature, low-cost and scalable 

technology, which can yield homogeneous particles of various shapes in the nano-scale size 

[33,34]. 

The substitution of cations in perovskites lattice allows improving the properties of these mixed-

metal oxides for catalyst applications [12,35,36]. In a previous preliminary study [37], titanium 

was partially substituted by copper [38,39] in the BaTiO3 perovskite structure, showing the 

resulting BaTi1-xCuxO3 perovskites a high activity for NOx storage, which was attributed to the 

presence of oxygen vacancies created on the catalyst surface as a consequence of the copper 

incorporation into the structure. It was also concluded that for BaTi0.8Cu0.2O3 catalyst the NOx 

storage capacity increases with the copper content until a certain limit is reached. Moreover, this 

catalyst presents a NOx storage capacity (300 mol/g at 420ºC) in the range of levels reported 

for noble metal-based catalysts [26]. Thus, the BaTi0.8Cu0.2O3 catalyst has been selected to 

analyze the effect of synthesis method. 

Nowadays, NOx and soot removal from lean-burn engines is a highly challenging issue. On the 

one hand, regarding NOx abatement, several technologies, as selective catalytic reduction 

(ammonia/urea-SCR and hydrocarbon-SCR) and NOx storage-reduction (NSR) have been 
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developed during the last decades [40]. Despite some drawbacks (such as a fuel penalty for rich 

events, sensitivity to fuel sulphur levels, thermal stability and control under transient engine 

operation [41]), NSR is still considered the most promising technology as it provides high de-

NOx performance and it does not require new infrastructure [42]. On another hand, the Diesel 

Particulate Filters (DPF) technology is employed for soot removal from the exhaust [40] and 

different materials (including simple and mixed transition metals oxides) [43,44] can be used as 

catalytic coating to decrease the temperature required to regenerate the filter. 

In this paper, the effect of the BaTi0.8Cu0.2O3 perovskites synthesis method on their properties as 

catalysts for NOx and soot removal has been analysed. Both a hydrothermal and a sol-gel 

method have been used to prepare BaTiO3 and BaTi0.8Cu0.2O3 perovskites. For the hydrothermal 

method, the effect of barium precursor- which can play a key role in the growth mechanism of 

BaTiO3 during synthesis- has been considered. 

II. Experimental 

II.1 Catalysts synthesis method 

Sol-gel method 

BaTiO3 and BaTi0.8Cu0.2O3 were prepared using a sol-gel method based on the Pechini-type 

reaction route modified to be used in an aqueous media [37]. In brief, the titanium isopropoxide 

(Ti) was hydrolysed and the resulting specie was solved in an aqueous solution of citric acid 

(CA) (Ti:CA = 1:2) and hydrogen peroxide (Ti:H2O2 = 2:1), forming the citrate-peroxo-titanate 

(IV) complex. Afterwards, the pH was adjusted to 8.5 with NH3, and the barium (Ba:Ti = 1:1) 

and copper precursor were added, using the amount corresponding to the stoichiometry 

(BaTi0.8Cu0.2O3). The solution was kept at 65ºC for 5h, until a gel was obtained. Then, the 
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sample was dried at 90ºC for 24h and, finally, calcined at 850ºC for 6h. The BaTiO3 and 

BaTi0.8Cu0.2O3 materials prepared by sol-gel method are called BTOsg and Cu-BTOsg, 

respectively (Table 1). 

Hydrothermal method 

BaTiO3 and BaTi0.8Cu0.2O3 were also synthesized by a hydrothermal method [26]. First of all, the 

barium precursor (barium acetate, nitrate or hydroxide) was dissolved in the appropriate volume 

of water and placed in a 50 mL Teflon vessel for 1 hour at 90ºC. The titanium and/or copper 

reactants were added to the barium solution as well as the adequate amount of the precipitant 

agent (mineralizer). The resulting mixture was placed again in a furnace at 90ºC. After reacting 

for 72 h, the vessel was taken out and cooled down to room temperature. The resultant products 

were filtered, washed with deionized water, dried in air at 90ºC and then calcined at 500ºC for 

3h. Two mineralizers (sodium or potassium hydroxide) were tested to prepare BaTiO3 and 

BaTi0.8Cu0.2O3 materials when barium acetate or nitrate were the barium precursor. However, 

when barium hydroxide was used as barium precursor, not additional mineralizer was added. In 

Table 1, the precursor used for the synthesis and the nomenclature of the catalysts are shown. 

II.2 Catalysts characterization 

The copper content of the catalysts was measured by ICP-AES, using a Perkin–Elmer device, 

model Optimal 4300 DV. The metal was extracted from the catalysts by refluxing them in 8M 

HCl solution for 2h. 
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The BET surface areas were determined by physical adsorption of N2 at –196ºC in an automatic 

volumetric system (Autosorb-6B from Quantachrome) after degassing the samples at 250ºC for 

4h. 

For the identification of phases and crystalline structures, X-ray diffraction (XRD) and Raman 

spectroscopy were used. XRD experiments were carried out on a Rigaku Miniflex II powder 

diffractometer, using Cu Kα (0,15418 nm) radiation with the 2θ angle in the range 20 to 80º, 

with a step of 0.025º and a time per step of 2 seconds. Raman scattering spectra were obtained on 

a Jobin-Ivon dispersive Raman spectrometer (model LabRam) with a variable power He:Ne laser 

source (633 nm) in the range of 100–1000 nm. 

For XPS spectra, a K-Alpha Photoelectron Spectrometer (from Thermo-Scientific with a AlKα 

(1486.7 eV) radiation source) was used. For the analysis, the pressure of the analysis chamber 

was maintained at 5∙10-10 mbar. The binding energy (BE) and kinetic energy (KE) scales were 

adjusted by setting the C 1s transition at 284.6 eV, and the BE and KE values were then 

determined with the peak-fit software of the spectrometer. 

The morphology of samples was observed with a ZEISS Merlin VP Compact Field Emission 

Scanning Electron Microscopy (FESEM) equipment. 

Temperature programmed reduction experiments with H2 (H2-TPR) were carried out in a 

Micromeritics device (model Pulse ChemiSorb 2705). For the experiments, 20 mg of the sample 

were heated at 10ºC/min from 25 to 900ºC under a 5% H2/Ar flow (40 ml/min, Ptotal = 1 atm).  
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II.3 Catalytic activity tests: NOx storage and soot combustion 

Soot combustion and NOx storage tests were carried out under temperature programmed reaction 

(TPR) conditions from 25 to 800 °C, at 10 °C/min. Soot oxidation experiments were performed 

in a fixed-bed reactor at atmospheric pressure under a gas flow (500 ml/min,) containing 500 

ppm NOx, 5 % O2 and balance N2. The catalytic bed was composed by a soot-catalyst mixture 

(80 mg of catalyst + 20 mg of soot in loose contact + 300 mg SiC). The model soot used is a 

carbon black from Cabot (Printex U). NOx adsorption/desorption experiments were also 

performed under similar conditions but without soot. The gas composition as a function of 

temperature was monitored by specific NDIR-UV gas analysers for NO, NO2, CO, CO2 and O2 

(Rosemount Analytical Model BINOS 1001, 1004 and 100) 

 

III. Results and discussion 

III.1 Structural characterization by XRD and Raman spectroscopy. 

Fig.1a and b show the XRD patterns of BaTiO3 and BaTi0.8Cu0.2O3obtained by using the two 

synthesis methods. As it was expected, the perovskite structure [33] is the main phase for all 

BaTiO3 mixed oxides (with or without copper) since the diffraction peaks observed (at 2Ө: 22,3º; 

31,4º; 38,8º; 45,2º; 51,0º; 56,1º; 65,8º; 74,9º; for (100), (110), (111), (200), (210), (211), (220) 

and (310) lattice planes, respectively) correspond to the standard JCPDS: 5-626 [45]. 

In the XRD patterns of the BTOsg catalyst (Fig.1a), a weak peak at 23.7º is identified indicating 

the presence of BaCO3 as segregated phase formed by carbonation of the excess of barium oxide 

during samples atmospheric exposure [39,46]. For the BAKOH, BNKOH and BBON catalysts, 

the presence of segregated phases is not identified. However, for BASOH and BNSOH (obtained 
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using NaOH as mineralizer) the presence of barium silicon titanium oxide (Ba2SiTi2O8) -coming 

from the reaction between the barium and titanium precursors and the porcelain crucible used for 

the synthesis- is detected. 

When a copper precursor is used in the sol-gel method to prepare the Cu-BTOsg catalyst, the 

presence of additional minority phases - such as Ba2TiO4 (28.7º, 28.8º, 29.3º, 30.1º), CuO (35.6º) 

and TiO2 (as rutile phase at ca. 27.5º and 36.1º)- is observed in the XRD patterns (Fig.1b). 

However, the perovskite structure is still the main phase. As it was previously reported, the high 

fraction of segregated phases formed during the sol-gel synthesis of the copper catalysts [37] 

proves that copper was incorporated into the perovskite structure. For Cu-BAKOH, Cu-BASOH, 

Cu-BNKOH, Cu-BNSOH, and Cu-BBOH catalysts, only the diffraction peaks corresponding to 

CuO are observed. These peaks show a higher intensity than for Cu-BTOsg catalyst because a 

higher fraction of CuO seems to be present on the solid surface [36]. 

From the XRD results it can be concluded that the synthesis method determines the phases 

formed and the location of copper in the perovskite structure. When a sol-gel method is used 

more phases are detected due to the incomplete reaction among precursors and to the partial 

incorporation of copper into the perovskite structure. When the catalysts are obtained using the 

hydrothermal method, the reaction between titanium and barium precursors to form BaTiO3 

perovskite is almost completed, therefore, the unique additional diffraction peak identified 

corresponds to CuO, which seems to be highly dispersed on the surface of the BaTiO3 

perovskite. Additionally, it can be concluded that barium hydroxide is the most convenient 

barium precursor for the hydrothermal method, since it keeps the high pH required for the 

synthesis of high purity BaTiO3 crystals [15] without using an additional alkaline mineralizer. 

Therefore, the BaTiO3 and BaTi0.8Cu0.2O3 perovskite prepared by sol-gel (BTOsg, Cu-BTOsg) 
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and by hydrothermal method using Ba(OH)2 (BBOH, Cu-BBOH) have been selected to carry out 

a deep study of the effect of the synthesis method on the physico-chemical properties of the 

catalysts. 

The Scherrer equation [47] was used to calculate the average crystal size for the BTOsg, BBOH, 

Cu-BTOsg and Cu-BBOH catalysts, which is shown in Table 2. A higher average crystal size is 

observed for the BBOH than for the BTOsg catalysts suggesting that, using the hydrothermal 

method, a mixed oxide with higher crystallinity is obtained. For copper catalysts, the average 

crystal size depends on the synthesis method. Using the sol-gel method (Cu-BTOsg), an increase 

of the crystal size is observed due to the incorporation of copper into the perovskite structure, 

whilst when the hydrothermal route is employed (Cu-BBOH), the crystal size decreases 

suggesting a lower crystallinity. As it was previously reported [37], by comparing the FWHM of 

the (2 0 0) and (1 1 1) XRD peaks, it is possible to determine if a perovskite presents a cubic or a 

tetragonal structure based on the (2 0 0)/(1 1 1) FWHM ratio. (This value is higher than 1 for a 

tetragonal perovskite structure due to the (0 0 2) peak of the tetragonal structure can appear 

overlapped with the (2 0 0) peak [48,49].) In Table 2 it is observed that the FWHM (2 0 0)/(1 1 

1) ratio is higher than 1 for all selected catalysts, so, it could be concluded that tetragonal 

perovskite structure is adopted using the two synthesis methods. The lattice parameters a and c, 

corresponding to the tetragonal structure, were calculated using Difracc plus software® (by 

Bruker), and the data are also included in Table 2. For the Cu-BTOsg catalyst, the parameter a 

increases and the paramater c decreases with respect to the BTOsg catalyst, suggesting a 

distortion of the tetragonal structure due to copper incorporation into the perovskite structure. 

For the Cu-BBOH catalyst, both lattice parameters decrease respect to the BBOH probably due 
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to the understoichiometric amount of titanium used during the synthesis in order to promote the 

introduction of copper into the structure. 

According to literature [49,50], only the tetragonal structure of BaTiO3 perovskite, which 

belongs to space group P4mm, presents first-order Raman-active modes with bands at, 

approximately, 180 cm−1, 265 cm−1,305 cm−1, 520 cm−1and 720 cm−1, corresponding to 

irreducible representations (A1(LO)), (A1(TO)), (B1), (A1, E(TO)) and (A1, E(LO), 

respectively. The Raman spectra shown in Fig.2, confirm that the two bare perovskites (BTOsg, 

BBOH) present tetragonal perovskite structure since bands at 305 cm−1, 520 cm−1 and 720 cm−1 

are clearly observed. The addition of copper during the sol-gel synthesis (Cu-BTOsg) leads to a 

distortion of the tetragonal structure as the main peaks in the Raman spectrum (305 cm−1, 520 

cm−1and 720 cm−1) almost disappear and, in addition, a new band at ca. 750 cm−1, corresponding 

to a Ba2TiO4 phase, is detected [51]. These results support the conclusion obtained from the XRD 

data (Fig.1b), and confirm that copper is introduced into the perovskite structure of the sol-gel 

catalyst. For the Cu-BBOH catalyst, a dramatic broadening of the tetragonal perovskite peaks is 

observed (Fig.2), indicating that the tetragonal structure is also modified. However, according 

with the XRD results (Fig.1a), the distorsion of the perovskite structure for Cu-BBOH catalyst 

seems to be related with the understoichiometric amount of titanium used during the synthesis. 

III.2. Copper content, surface area and morphology. 

The BET surface area (obtained from N2 adsorption isotherm) and the copper content (measured 

by ICP-AES) of the catalysts are includedin Table 2. All catalysts show a low BET surface area, 

as it was expected for mixed oxides with perovskite structure [12,52]. The ICP-AES results 

reveal that all copper added for both synthesis methods is present in the catalysts. 
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FESEM analysis (Fig.3a-d) was carried out to obtain information about the grain size, the shape 

and the degree of particle agglomeration of the catalysts. The FESEM image of the BTOsg 

reveals that the particles of this material are in the micrometer size range and that they are 

formed by highly agglomerated irregular grains. This fact suggests that a sintering process of the 

mixed oxide occurred during the synthesis due to the high temperature used for the calcination 

step (850ºC for 6h), which is in agreement with the low surface area of the catalysts (Table 2). 

After the incoporation of copper into the perovskite (Cu-BTOsg), the morphology of the powder 

changes from agglomerated grains into needle-shape grains, although the grain size does not 

appreciably change (Fig.3b). For the BBOH and Cu-BBOH catalysts, a very different shape is 

observed by FESEM (Fig.3c-d) as well as a decrease of the grains size to the nanometer range. 

Both hydrothermal synthesized solids show grains with hollow cube morphology, but the shape 

of the Cu-BBOH catalyst is more irregular than that of the BBOH catalyst due to the 

understoichiometric amount of titanium used during the synthesis. Note that for Cu-BBOH 

particles different to the hollow cube are not distinguished, confirming that copper is highly 

dispersed on the surface of the BBOH perovskite. 

III.3 Surface composition characterization by XPS 

XPS was used to determine the near-surface composition and near-surface ion electronic states 

of Cu and O and the results are shown in Fig.4-5 and in Table 2. Fig.4 shows the XPS spectra 

obtained for the Cu 2p3/2 transition of Cu-BTOsg and Cu-BBOH catalysts. The deconvolution of 

the normalized spectra of Cu-BTOsg reveals two bands with binding energy (BE) maxima at 

933.2 eV and 935.2 eV, corresponding to Cu (II) species, which is confirmed by the appearing of 

a satellite peak (not shown) at 941-944 eV, due to the presence of a free 3d level [53,54]. For the 

Cu-BBOH catalyst, the bands BE maxima appear at 932.2 eV and 934.1 eV, being the satellite 
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peak (not shown) at 941-944 eV and, consequently, also corresponding to Cu (II) species 

[43,55]. 

The position of the XPS bands corresponding to Cu (II) species reveals a stronger interaction 

between copper and the perovskite surface for the Cu-BTOsg catalyst than for the Cu-BBOH 

catalyst, since the maximum of the bands appears at higher BE for the former catalyst. Thus, the 

two contributions of the Cu-BTOsg catalyst can be ascribed to: i) copper with stronger 

interaction with support or incorporated into the structure (CuL at high eV) and ii) copper with 

weaker interaction with the support or supported copper (CuS at low eV) [37]. The Cu XPS 

spectra of the Cu-BBOH catalyst is the expected for supported copper oxide [30]. Additionally, 

by comparing the Cu/Ba+Ti+Cu ratio calculated from XPS data (shown in Table 2) with the 

corresponding nominal ratio for both catalysts, it can be deduced that: i) copper is incorporated 

into the catalyst structure of the Cu-BTOsg since the XPS ratio is lower than the nominal ratio 

and ii) copper is located on the catalyst surface of the Cu-BBOH because the Cu/Ba+Ti+Cu XPS 

ratio is higher than the nominal one. On the other hand, considering that the Ti/Ba ratio must be 

1 for a BaTiO3 perovskite and 0.5 for a Ba2TiO4
 mixed oxide, the data of Table 2 reveal that for 

the BTOsg and Cu-BTOsg catalysts, the Ti/Ba and Ti+Cu/Ba ratios are close to 0.5 suggesting 

that the Ba2TiO4 phase is present at the surface of this catalyst due to the incorporation of copper 

into the perovskite structure [26]. On the contrary, for the BBOH and Cu-BBOH catalysts, the 

Ti/Ba and Ti+Cu/Ba ratios are closer to 1, indicating that BaTiO3 is the main phase. Thus, in 

agreement with the XRD and Raman results, the XPS characterization also indicates that the 

incorporation of copper into the perosvkite structure only takes place when the sol-gel method is 

used. 
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Fig.5 shows the XPS spectra of the O1s transition for the BTOsg, BBOH, Cu-BTOsg and Cu-

BBOH catalysts, where three contributions, at approximately 529 eV, 531 eV and 533 eV 

binding energies, are identified. According to literature [56,57], they can be ascribed to: i) lattice 

oxygen of metal oxides at ca. 529 eV (denoted as OL), ii) surface oxygen species such as oxygen 

peroxides (O2
2−), surface carbonates (CO3

2−), and/or hydroxyl groups (OH−), at ca. 531 eV 

(denoted as O*) and, iii) adsorbed water at ca. 533 eV (denoted as H2O). For the bare perovskites 

(BTOsg and BBOH) the band corresponding to lattice oxygen (OL) shows the highest intensity. 

This highlights the high crystallinity degree of both samples, although the BTOsg perovskite 

shows a higher concentration of surface oxygen species than the BBOH perovskite. These 

surface oxygen species of the BTOsg perovskite mostly correspond to carbonate species (also 

identified by XRD) formed by the carbonation of the segregated barium oxide, present at the end 

of the synthesis due to an incomplete reaction as previously mentioned [46]. After the copper 

addition (Cu-BTOsg and Cu-BBOH catalysts), the intensity of the band ascribed to surface 

oxygen species (O*) notably increases. Based on XRD and Raman results, it has been concluded 

that for the Cu-BTOsg a high segregation of phases, such as BaCO3, Ba2TiO4, TiO2 and CuO, 

occurs for the Cu-BTOsg perovskite due to the incorporation of copper into the perovskite 

structure. Thus, the band observed around 531 eV in the O1s XPS spectra of the Cu-BTOsg 

catalyst can be mostly ascribed to the presence of carbonate species on the catalyst surface. For 

the Cu-BBOH catalyst, the high intensity of the band at 531 eV seems to mainly correspond to 

the presence of a high amount of surface hydroxyl species, formed on the surface defects present 

in the perovskite structure due to the under stoichiometric amount of titanium used in the 

synthesis. This also explain the highest concentration of adsorbed water (band at 533 eV). 
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III.4 Temperature programmed reduction (H2-TPR) 

The reducibility of copper in the BaTi0.8Cu0.2O3 catalysts prepared using both sinthesys methods 

has been analized by temperature programmed reduction with hydrogen (H2-TPR) and the H2 

consumption profiles between 100 and 800ºC are shown in Fig.6. The Cu-BTOsg and Cu-BBOH 

catalysts show a well-defined H2 consumption peak between 250 and 350ºC which corresponds 

to the reduction of almost all copper species as the percentage of reduced copper (included in 

Table 2) indicates [37]. The high H2 consumption for the Cu-BBOH catalyst corresponds to the 

reduction of highly dispersed copper oxide on the BaTiO3 surface which takes place at lower 

temperature than for the copper oxide used as reference (profile also included in Fig.6) [58,59]. 

For the Cu-BTOsg the high H2 consumption peak at low temperature is ascribed to the reduction 

of copper incorporated into the lattice because this situation implies an increase in the copper 

coordination respect to the CuO used as reference, which increases copper reducibility. 

Moreover, the strong electronic interaction of copper with the other perovskite atoms also 

contributes to decrease the reduction temperature [37]. On the contrary, the H2 consumption 

profiles of the Cu-BTOsg and Cu-BBOH between 350 and 800ºC are different. For the Cu-

BTOsg, an increase of the TCD signal below 450ºC and two peaks at 380 and 800ºC are 

detected. The peak at ca. 380ºC corresponds to the reduction of an agglomerated copper oxide 

phase, also identified by XRD, as this reduction occurs at the same temperature than the copper 

oxide used as reference. The increase of the TCD signal at temperature higher than 450ºC 

corresponds to the desorption of surface oxygen species, such as hydroxyl at 450ºC, and to the 

decomposition of carbonate groups below 750ºC [37]. The profile of the Cu-BBOH catalyst 

shows a low H2 consumption between 350 and 800ºC due to the desorption of surface oxygen 

(hydroxyl) species identified by XPS. 
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III.5. Catalytic activity: NOx storage and soot oxidation experiments under temperature 

programmed reaction (TPR) conditions.  

The challenge for NOx and soot removal is to design a suitable low temperature catalyst with 

high stability, sulphur poisoning resistance and low cost. Fig.7 shows the NOx TPR conversion 

profiles for the BTOsg, Cu-BTOsg, BBOH, Cu-BBOH catalysts, which provide information 

about the NOx adsorption and desorption process. In these profiles a positive value of NOx 

conversion reveals that NOx adsorption occurs, whilst a negative percentage of NOx conversion 

indicates that NOx desorption is taking place. Thus, as it was expected, the BTOsg and BBOH 

catalysts show flat NOx conversion profiles, suggesting that NOx adsorption and desorption 

processes do not take place in an appreciably extent. As it has been previously reported [37,38], 

the amount of surface oxygen species plays an important role in the NOx storage capacity and 

the characterization results reveal that BTOsg and BBOH catalysts present a high crystalline 

structure with a small amount of defects and, for hence, a low amount of surface oxygen species, 

which explains their poor NOx adsorption/desorption capacity. After the addition of copper into 

the perovskite, a different performance for NOx adsorption and desorption has been observed. 

The Cu-BTOsg NOx conversion profile shows two adsorption maxima at around 300ºC and 

450ºC -corresponding to two different adsorption processes- and one desorption minimum at 

around 560ºC [37]. For the Cu-BBOH catalyst, only a low NOx conversion minimum can be 

identified. The XPS and XRD results indicate that the Cu-BTOsg catalyst presents both a high 

amount of segregated phases (BaCO3 and Ba2TiO4) and a high amount of surface oxygen species 

(mainly carbonate), due to the partial substitution of titanium by copper into the perovskite 

structure, which explains the high NOx adsorption capacity [37,38]. However, for the Cu-BBOH 

catalyst, copper was not incorporated into the perovskite structure remaining supported on the 
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catalyst surface as copper oxide and, for hence, a low NOx adsorption capacity is shown. 

However, the desorption observed in Fig.7 for Cu-BBOH reveals that some NOx must be 

adsorbed on the surface oxygen groups (hydroxyl) generated due to the under-stoichiometric 

amount of titanium used during synthesis. However, as the amount of surface oxygen species is 

much lower for Cu-BBOH than for Cu-BTOsg, a lower NOx adsorption/desorption is observed. 

The TPR NO2 profiles corresponding to the NOx adsorption-desorption experiments shown in 

Fig.8 provide information about the catalysts activity for the NO oxidation to NO2. At low 

temperature all the catalysts seem to accelerate the NO oxidation to NO2, but beyond 550ºC the 

NO2 percentage decreases due to thermodynamic limitations. The NO2 production is notably 

higher for both catalysts in the presence of copper due to its ability for the catalysis of this 

oxidation reaction [43]. However, again, the location of copper in the perovskite structure 

determines the catalytic performance, showing the Cu-BBOH catalyst the highest activity for the 

NO oxidation to NO2 (around 30% of NO2 production between 400 and 450ºC), due to the 

presence of highly dispersed copper oxide on the catalyst surface. When copper is introduced 

into the perovskite structure (Cu-BTOsg), the NO2 production is also improved respect to BTOsg 

due to the presence of a small amount of surface CuO, but the increase is apparently lower than 

for the Cu-BBOH catalyst. In the NO2 profile of the Cu-BTOsg catalyst, it is also observed a 

minimum at the temperature at which the NOx adsorption profile (Fig.7) achieves the maximum 

because a fraction of the NO2 generated is being adsorbed on the active sites created due to the 

incorporation of copper into the perovskite structure. Consequently, the high NOx adsorption 

capacity of the Cu-BTOsg catalyst decreases the observed NO to NO2 oxidation activity  

According to the NO to NO2 oxidation activity shown by the copper perovskite catalysts, the 

soot oxidation activity in NO/O2 atmosphere of these catalysts has been also tested. Fig.9 



18 
 

features the soot oxidation TPR profiles obtained, including the corresponding to BTOsg and 

BBOH perovskites and a model platinum catalyst for comparative purposes, whilst Table 3 

presents the related data (T50% -which is the temperature required to convert 50% of the soot 

used in each experiment- and the percentage of selectivity to CO2). The data indicate that only in 

the presence of copper the temperature for soot oxidation (T 50%) decreases and the CO2 

selectivity of the catalyst increases. As it was expected considering the NO2 profiles (Fig.8), Cu-

BBOH -with copper highly dispersed on the surface- is the most active catalyst for soot 

oxidation in NO/O2 atmosphere since it shows the lowest soot combustion temperature and also 

the highest selectivity to CO2 (93% CO2 selectivity) which is close to that shown by the model 

platinum catalyst. 

Thus, it can be concluded that the location of copper in the catalyst determines the catalytic 

activity and, hence, its application. When copper is incorporated into the perovskite structure, a 

catalyst with a high NOx storage capacity is obtained, but if copper remains as highly dispersed 

copper oxide on the surface of BaTiO3, the catalyst shows a high activity for the NO to NO2 

oxidation and, therefore, can be used as an oxidation catalyst for soot removal. 

 

IV. Conclusions 

From the results presented in this paper, the following conclusions can be extracted: 

 BaTiO3 and BaTi0.8Cu0.2O3 perovskites with tetragonal structure have been synthesized 

using both sol-gel and the hydrothermal method. For the hydrothermal method, barium 

hydroxide is the most convenient barium precursor because it avoids the use of an 

additional alkaline mineralizer.  
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 The position of copper on the catalyst is highly dependent of the synthesis method: i) for 

sol-gel method, the copper is partially introduced into the perovskite structure, promoting 

the segregation of phases, distorting the perovskite structure and creating oxygen 

vacancies which allows the formation of a high amount of oxygen surface groups and ii) 

for hydrothermal method, the copper remains highly dispersed on the surface of the 

perovskite which, in turn, shows a higher degree of crystallinity and a lower amount of 

oxygen surface groups than the former method. 

 The location of copper in the catalyst determines its catalytic applications: the sol-gel 

catalyst (Cu-BTOsg), with copper incorporated into the perovskite structure, presents a 

high NOx storage capacity whilst the hydrothermal catalyst (Cu-BBOH), with copper 

highly dispersed on the surface, shows a high activity for the NO oxidation to NO2 and, 

hence, can be used as catalyst for soot removal. 
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Table 1. Nomenclature, molecular composition and synthesis details of the catalysts. 

Catalyst  Synthesis method Molecular  

composition 

Barium precursor Mineralizer 

BTOsg Sol-gel BaTiO3 Barium acetate Not needed 

BAKOH Hydrothermal BaTiO3 Barium acetate KOH 

BASOH Hydrothermal BaTiO3 Barium acetate NaOH 

BNKOH Hydrothermal BaTiO3 Barium nitrate KOH 

BNSOH Hydrothermal BaTiO3 Barium nitrate NaOH 

BBOH Hydrothermal BaTiO3 Barium hydroxide Not added 

Cu-BTOsg Sol-gel BaTi0.8Cu0.2O3 Barium acetate Not needed 

Cu-BAKOH Hydrothermal BaTi0.8Cu0.2O3 Barium acetate KOH 

Cu-BASOH Hydrothermal BaTi0.8Cu0.2O3 Barium acetate NaOH 

Cu-BNKOH Hydrothermal BaTi0.8Cu0.2O3 Barium nitrate KOH 

Cu-BNSOH Hydrothermal BaTi0.8Cu0.2O3 Barium nitrate NaOH 

Cu-BBOH Hydrothermal BaTi0.8Cu0.2O3 Barium hydroxide Not added 
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Table 2. Characterization data for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 

Catalyst SBET 

(m2/

g) 

Nominal 

Cu  

(wt%) 

ICP-AES 

Cu  

(wt%) 

Average 

crystal 

size (nm) 

 

a (Å) c (Å) FWHM 

(2 0 0)/ 

(1 1 1) 

Cu reduced 

during  

H2-TPR 

(molar %)* 

Cu/ 

Cu+Ba+Ti 

(nominal) 

Cu/ 

Cu+Ba+Ti 

(XPS) 

Ti/ 

Ba  

(XPS) 

Ti+Cu 

/Ba 

(XPS) 

BTOsg 9 - - 29 4.011 4.005 1.48 - - - 0.55 - 

Cu-BTOsg 11 5.4 5.4 38 4.008 4.008 1.44 -  - - 0.92 - 

BBOH 11 - - 37 4.007 4.007 1.70 93 0.1 0.08 - 0.49 

Cu-BBOH 15 5.4 5.5 34 4.001 4.004 1.52 98 0.1 0.12 - 0.98 

*Experiment carried out under a 5% H2/Ar flow (40 ml/min, Ptotal = 1 atm) in temperature programmed conditions from 25ºC to 900ºC at 10ºC/min 
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Table 3. T50% (Temperature for the 50% soot conversion) and CO2 selectivity obtained 

for the BTOsg, Cu-BTOsg, BBOH, Cu-BBOH catalysts and for Pt/Al2O3 as reference. 

Catalyst T50% (ºC) CO2 selectivity (%) 

No catalyst 591 38 

BTOsg 594 46 

BBOH 585 38 

Cu-BTOsg 565 70 

Cu-BBOH 545 93 

Pt/Al2O3 492 99 

*Experiments carried out under a gas flow containing 500 ppm NOx and 5% O2 in N2 balance (500 ml/min, Ptotal = 

1 atm) in temperature programmed conditions from 25ºC to 800ºC at 10ºC/min. 
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Fig. 1 XRD diffractograms for the sol-gel and hydrothermal: a) BaTiO3 catalysts and b) 

BaTi0.8Cu0.2O3 catalysts. ▼ BaTiO3, ◊Ba2SiTi2O8, □ Ba2TiO4, ♦ BaCO3, ■ TiO2, ● CuO. 

Fig. 2. Raman spectra for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 

Fig. 3 a-d FESEM images for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 

Fig. 4. Cu 2p3/2 XPS spectra for Cu-BTOsg and Cu-BBOH catalysts. 

Fig. 5. O1s XPS transition for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 

Fig. 6. TPR-H2 profiles for CuO ref, Cu-BTOsg and Cu-BBOH catalysts. (Experiments carried 

out under a gas flow (40 ml/min, Ptotal = 1 atm) containing 5% H2 in Ar balance). 

Fig. 7. TPR NOx conversion profiles (%) for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH 

catalysts (Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 atm) containing 500 

ppm NOx and 5% O2 in N2 balance). 

Fig. 8. TPR NO2 generation profiles for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts 

(Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 atm) containing 500 ppm NOx 

and 5% O2 in N2 balance). 

Fig. 9. TPR soot conversion profiles (%) for BTOsg, Cu-BTOsg, BBOH, Cu-BBOH catalysts 

and Pt/Al2O3 as reference (Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 

atm) containing 500 ppm NOx and 5% O2 in N2 balance). 
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Fig. 1 XRD diffractograms for the sol-gel and hydrothermal: a) BaTiO3 catalysts and b) 

BaTi0.8Cu0.2O3 catalysts.  

▼ BaTiO3, ◊Ba2SiTi2O8, □ Ba2TiO4, ♦ BaCO3, ■ TiO2, ● CuO. 
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Fig. 2. Raman spectra for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 
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Fig. 3 a-d FESEM images for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 
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Fig. 4. Cu 2p3/2 XPS spectra for Cu-BTOsg and Cu-BBOH catalysts. 
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Fig. 5. O1s XPS transition for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts. 
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Fig. 6. TPR-H2 profiles for CuO ref, Cu-BTOsg and Cu-BBOH catalysts. (Experiments carried 

out under a gas flow (40 ml/min, Ptotal = 1 atm) containing 5% H2 in Ar balance). 
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Fig. 7. TPR NOx conversion profiles (%) for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH 

catalysts (Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 atm) containing 500 

ppm NOx and 5% O2 in N2 balance). 
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Fig. 8. TPR NO2 generation profiles for BTOsg, Cu-BTOsg, BBOH and Cu-BBOH catalysts 

(Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 atm) containing 500 ppm NOx 

and 5% O2 in N2 balance). 
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Fig. 9. TPR soot conversion profiles (%) for BTOsg, Cu-BTOsg, BBOH, Cu-BBOH catalysts 

and Pt/Al2O3 as reference (Experiments carried out under a gas flow (500 ml/min, Ptotal = 1 atm) 

containing 500 ppm NOx and 5% O2 in N2 balance). 

 




