268 research outputs found

    Targeted photoimmunotherapy for cancer

    Get PDF
    Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents

    The dark recovery rate in the photocycle of the bacterial photoreceptor YtvA is affected by the cellular environment and by hydration

    Get PDF
    We report thermal recovery kinetics of the lit state into the parental dark state, measured for the blue light-sensing photoreceptor YtvA inside overexpressing E. coli and B. subtilis bacterial cells, performed for the wild type and several mutated proteins. Recovery was followed as a recovery of the fluorescence, as this property is only found for the parental but not for the photochemically generated lit state. When cells were deposited onto a microscope glass plate, the observed thermal recovery rate in the photocycle was found ca. ten times faster in comparison to purified YtvA in solution. When the E. coli or B. subtilis colonies were soaked in an isotonic buffer, the dark relaxation became again much slower and was very similar to that observed for YtvA in solution. The observed effects show that rate constants can be tuned by the cellular environment through factors such as hydration. Copyright

    Immobilization of proteins in silica gel: Biochemical and biophysical properties

    Get PDF
    The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques

    Probiogenomics analysis of 97 lactobacillus crispatus strains as a tool for the identification of promising next-generation probiotics

    Get PDF
    Members of the genus Lactobacillus represent the most common colonizers of the human vagina and are well-known for preserving vaginal health and contrasting the colonization of oppor-tunistic pathogens. Remarkably, high abundance of Lactobacillus crispatus in the vaginal environment has been linked to vaginal health, leading to the widespread use of many L. crispatus strains as probi-otics. Nevertheless, despite the scientific and industrial relevance of this species, a comprehensive investigation of the genomics of L. crispatus taxon is still missing. For this reason, we have performed a comparative genomics analysis of 97 L. crispatus strains, encompassing 16 strains sequenced in the framework of this study alongside 81 additional publicly available genome sequences. Thus, allowing the dissection of the L. crispatus pan-genome and core-genome followed by a comprehensive phylogenetic analysis based on the predicted core genes that revealed clustering based on ecological origin. Subsequently, a genomics-targeted approach, i.e., probiogenomics analysis, was applied for in-depth analysis of the eight L. crispatus strains of human origin sequenced in this study. In detail their genetic repertoire was screened for strain-specific genes responsible for phenotypic features that may guide the identification of optimal candidates for next-generation probiotics. The latter includes bacteriocin production, carbohydrates transport and metabolism, as well as a range of features that may be responsible for improved ecological fitness. In silico results regarding the genetic repertoire involved in carbohydrate metabolism were also validated by growth assays on a range of sugars, leading to the selection of putative novel probiotic strains

    The Interaction of Hypericin with SARS-CoV-2 Reveals a Multimodal Antiviral Activity

    Get PDF
    Hypericin is a photosensitizing drug that is active against membrane-enveloped viruses and therefore constitutes a promising candidate for the treatment of SARS-CoV-2 infections. The antiviral efficacy of hypericin is largely determined by its affinity toward viral components and by the number of active molecules loaded on single viruses. Here we use an experimental approach to follow the interaction of hypericin with SARS-CoV-2, and we evaluate its antiviral efficacy, both in the dark and upon photoactivation. Binding to viral particles is directly visualized with fluorescence microscopy, and a strong affinity for the viral particles, most likely for the viral envelope, is measured spectroscopically. The loading of a maximum of approximately 30 molecules per viral particle is estimated, despite with marked heterogeneity among particles. Because of this interaction, nanomolar concentrations of photoactivated hypericin substantially reduce virus infectivity on Vero E6 cells, but a partial effect is also observed in dark conditions, suggesting multiple mechanisms of action for this drug

    A photosensitizing fusion protein with targeting capabilities

    Get PDF
    The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed

    Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7.

    Get PDF
    Nitrophorins (NP) 1-7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the effect of Glu27 → Val and Glu27 → Gln mutations on the ligand binding kinetics using CO as a model. The results reveal that annihilation of the negative charge of Glu27 upon mutation reduces the pH sensitivity of the ligand binding rate, a process that in turn depends on the ionization of Asp32. We propose that Glu27 exerts a through-space electrostatic action on Asp32, which shifts the pKa of the latter amino acid towards more acidic values thus reducing the pH sensitivity of the transition between open and closed states

    Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure

    Get PDF
    In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment

    Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses

    Get PDF
    Functional constipation (FC) is a gastrointestinal disorder with a high prevalence among the general population. The precise causes of FC are still unknown and are most likely multifactorial. Growing evidence indicates that alterations of gut microbiota composition contribute to constipation symptoms. Nevertheless, many discrepancies exist in literature and no clear link between FC and gut microbiota composition has as yet been identified. In this study, we performed 16 S rRNA-based microbial profiling analysis of 147 stool samples from 68 FC individuals and compared their microbial profiles with those of 79 healthy subjects (HS). Notably, the gut microbiota of FC individuals was shown to be depleted of members belonging to Bacteroides, Roseburia and Coprococcus 3. Furthermore, the metabolic capabilities of the gut microbiomes of five FC and five HS individuals were evaluated through shotgun metagenomics using a MiSeq platform, indicating that HS are enriched in pathways involved in carbohydrate, fatty acid and lipid metabolism as compared to FC. In contrast, the microbiomes corresponding to FC were shown to exhibit high abundance of genes involved in hydrogen production, methanogenesis and glycerol degradation. The identified differences in bacterial composition and metabolic capabilities may play an important role in development of FC symptoms

    Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010

    Get PDF
    The acquisition and assimilation strategies followed by members of the infant gut microbiota to retrieve nitrogen from the gut lumen are still largely unknown. In particular, no information on these metabolic processes is available regarding bifidobacteria, which are among the first microbial colonizers of the human intestine. Here, evaluation of amino acid auxotrophy and prototrophy of Bifidobacterium bifidum, with particular emphasis on B. bifidum strain PRL2010 (LMG S-28692), revealed a putative auxotrophy for cysteine. In addition, we hypothesized that cysteine plays a role in the oxidative stress response in B. bifidum. The use of glutathione as an alternative reduced sulfur compound did not alleviate cysteine auxotrophy of this strain, though it was shown to stimulate expression of the genes involved in cysteine biosynthesis, reminiscent of oxidative stress response. When PRL2010 was grown on a medium containing complex substrates, such as whey proteins or casein hydrolysate, we noticed a distinct growth-promoting effect of these compounds. Transcriptional analysis involving B. bifidum PRL2010 cultivated on whey proteins or casein hydrolysate revealed that the biosynthetic pathways for cysteine and methionine are modulated by the presence of casein hydrolysate. Such findings support the notion that certain complex substrates may act as potential prebiotics for bifidobacteria in their ecological niche
    • …
    corecore