63 research outputs found

    Cathepsin B-associated Activation of Amyloidogenic Pathway in Murine Mucopolysaccharidosis Type I Brain Cortex

    Get PDF
    Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of alpha-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of beta-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration

    Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan

    Get PDF
    Syndecans are heparan sulfate proteoglycans characterized as transmembrane receptors that act cooperatively with the cell surface and extracellular matrix proteins. Syn4 knockdown was performed in orderto address its role in endothelial cells (EC) behavior. Normal EC and shRNA-Syn4-EC cells were studied comparatively using complementary confocal, super-resolution and non-linear microscopic techniques. Confocal and super-resolution microscopy revealed that Syn4 knockdown alters the level and arrangement of essential proteins for focal adhesion, evidenced by the decoupling of vinculin from F-actin filaments. Furthermore, Syn4 knockdown alters the actin network leading to filopodial protrusions connected by VE-cadherin rich junction. shRNA-Syn4-EC showed reduced adhesion and increased migration. Also, Syn4 silencing alters cell cycle as well as cell proliferation. Moreover, the ability of EC to form tube-like structures in matrigel is reduced when Syn4 is silenced. Together, the results suggest a mechanism in which Syndecan-4 acts as a central mediator that bridges fibronectin, integrin and intracellular components (actin and vinculin) and once silenced, the cytoskeleton protein network is disrupted. Ultimately, the results highlight Syn4 relevance for balanced cell behavior. (C) 2016 Elsevier B.V. All rights reserved.CAPES (Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior)CNPq (Conselho Nacional de Desenvolvimento Cientffico e Tecnologico)FAPESP (Fundacao de Amparo a Pesquisa do Estado de sao Paulo), BrazilUniv Fed Sao Paulo, Escola Paulista Med, Dept Bioquim, Disciplina Biol Mol, Sao Paulo, SP, BrazilUniv Liverpool, Inst Integrat Biol, Dept Biochem, Liverpool, Merseyside, EnglandUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Diadema, SP, BrazilUniv Houston, Coll Optometry, TOSI, Houston, TX USAUniv Fed Sao Paulo, Grp Interdisciplinar Ciencias Exatas Saude, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Dept Bioquim, Disciplina Biol Mol, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Diadema, SP, BrazilUniv Fed Sao Paulo, Grp Interdisciplinar Ciencias Exatas Saude, Sao Paulo, SP, BrazilFAPESP: 15/08782-3FAPESP: 15/03964-6Web of Scienc

    A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk

    Get PDF
    We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed
    corecore