600 research outputs found

    Children\u27s spirituality: an essential element in thinking and learning in new times

    Get PDF
    As the twenty-first century unfolds with its emphasis on global concerns and typified by technology that is obsolete before it is out of its packaging, we need to reconsider what we understand by thinking and learning. Such reframing is essential if we are to adequately educate the twenty-first century learner. In the past, we neatly separated the cognitive realm of thinking and learning from the physical, social and emotional realities of the learner. However, substantial research has clearly established the interdependence and connectedness of each of these spheres within individuals. Spirituality, though, has barely been considered in these constructions of young people

    Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.PURPOSE: Personalized modeling of brace action has potential in improving brace efficacy in adolescent idiopathic scoliosis (AIS). Model validation and simulation uncertainty are rarely addressed, limiting the clinical implementation of personalized models. We hypothesized that a thorough validation of a personalized finite element model (FEM) of brace action would highlight potential means of improving the model. METHODS: Forty-two AIS patients were included retrospectively and prospectively. Personalized FEMs of pelvis, spine and ribcage were built from stereoradiographies. Brace action was simulated through soft cylindrical pads acting on the ribcage and through displacements applied to key vertebrae. Simulation root mean squared errors (RMSEs) were calculated by comparison with the actual brace action (quantified through clinical indices, vertebral positions and orientations) observed in in-brace stereoradiographies. RESULTS: Simulation RMSEs of Cobb angle and vertebral apical axial rotation was lower than measurement uncertainty in 79 % of the patients. Pooling all patients and clinical indices, 87 % of the indices had lower RMSEs than the measurement uncertainty. CONCLUSIONS: In-depth analysis suggests that personalization of spinal functional units mechanical properties could improve the simulation's accuracy, but the model gave good results, thus justifying further research on its clinical application

    A method to localize gamma-ray bursts using POLAR

    Full text link
    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the chi2 obtained in the comparison between the measured scaler pattern and the database. This GRB localization technique brings enough accuracy so that the error transmitted to the 100% modulation factor is kept below 10% for GRBs with fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will be useful for those cases where no other instruments are simultaneously observing the same field of view.Comment: 13 pages, 10 figure

    Immunohistochemical localization of collagen types I and VI in human skin wounds

    Get PDF
    A total of 74 human skin wounds were investigated and collagen types I and VI were localized in the wound area by immunohistochemistry. Collagen type I appeared in the form of ramifying string-like structures after approximately 5–6 days, but positive reactions in the form of a spot-like staining around isolated fibroblasts also occurred in a skin wound aged 4 days. Collagen VI was detectable after a post-infliction interval of at least 3 days showing a strongly positive reacting network associated with fibroblasts in the wound area. Both collagens appeared almost constantly after a wound age of 6–7 clays and could also be found in wounds aged a few months. Therefore, although a positive reaction for collagen type I in the form of string-like and ramifying structures around wound fibroblasts indicates a wound age of at least 5–6 days, a spot-like positive staining for collagen type I cannot exclude a wound age of at least 4 days. A positive staining for collagen type VI represents a post-infliction time of 3 days or more. The almost constant appearance of these collagen types suggests that negative results in a sufficient number of specimens indicate a wound age of less than 6–7 days, but cannot completely exclude longer post-infliction intervals. Since collagen type I and VI are also found in the granulation/scar tissue of lesions with advanced wound age, the immunohistochemical analysis of these proteins provides no further information for an age determination of older skin wounds

    POLAR, an instrument to measure GRB polarization. Design and laboratory tests.

    Get PDF
    International audienceReliable polarization measurements of photons from Gamma Ray Bursts (GRB) would make the understanding of the GRB phenomenon progress enormously. POLAR is a concept for an instrument that would enable such a measurement. We report about performances predicted by of Monte-Carlo and on laboratory tests to validate some critical aspects of the desig

    The electromagnetic calorimeter of the AMS-02 experiment

    Full text link
    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.Comment: Proceedings of SF2A conference 201

    POLAR: a space borne GRB polarimeter

    Get PDF
    International audienceThe direction and the level of polarization of high energy photons emitted by astrophysics sources are valuable observables for the understanding of the corresponding emission mechanisms, source geometry and strength of magnetic fields at work. POLAR is a novel compact space-borne detector conceived for a precise measurement of hard X-ray polarization and optimized for the detection of Gamma-Ray Burst (GRB) photons in the energy range 50-500 keV. In POLAR, the GRB photons undergo Compton scattering in a target made out of 1600 plastic scintillator bars. The azimuthal distribution of the scattered photons inside the target provides the information on the GRB polarization. The target is divided into 5x5 units, each one consisting of 8x8 scintillator bars optically coupled with a multi-anode photomultiplier. POLAR, thanks to its large modulation factor (mu_100=40%), its large effective area (Aeff = 250 cm2), and its large field of view ( 1/3 of the sky) will be able to determine the degree and angle of polarization of a strong GRB with a minimum detectable polarization of less than 10% (3sigma). In this communication the present design and status of the POLAR project is presented. Expected results through deep Monte Carlo simulation studies as well as the recent results of laboratory measurements are detailed

    Evolution of the AO Spine Sacral and Pelvic Classification System: a systematic review.

    Get PDF
    OBJECTIVE The purpose of this study was to describe the genesis of the AO Spine Sacral and Pelvic Classification System in the context of historical sacral and pelvic grading systems. METHODS A systematic search of MEDLINE, EMBASE, Google Scholar, and Cochrane databases was performed consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify all existing sacral and pelvic fracture classification systems. RESULTS A total of 49 articles were included in this review, comprising 23 pelvic classification systems and 17 sacral grading schemes. The AO Spine Sacral and Pelvic Classification System represents both the evolutionary product of these historical systems and a reinvention of classic concepts in 5 ways. First, the classification introduces fracture types in a graduated order of biomechanical stability while also taking into consideration the neurological status of patients. Second, the traditional belief that Denis central zone III fractures have the highest rate of neurological deficit is not supported because this subgroup often includes a broad spectrum of injuries ranging from a benign sagittally oriented undisplaced fracture to an unstable "U-type" fracture. Third, the 1990 Isler lumbosacral system is adopted in its original format to divide injuries based on their likelihood of affecting posterior pelvic or spinopelvic stability. Fourth, new discrete fracture subtypes are introduced and the importance of bilateral injuries is acknowledged. Last, this is the first integrated sacral and pelvic classification to date. CONCLUSIONS The AO Spine Sacral and Pelvic Classification is a universally applicable system that redefines and reorders historical fracture morphologies into a rational hierarchy. This is the first classification to simultaneously address the biomechanical stability of the posterior pelvic complex and spinopelvic stability, while also taking into consideration neurological status. Further high-quality controlled trials are required prior to the inclusion of this novel classification within a validated scoring system to guide the management of sacral and pelvic injuries

    Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Get PDF
    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be) and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
    • …
    corecore