858 research outputs found

    Semi-transparent Boundary Conditions in the Worldline Formalism

    Full text link
    The interaction of a quantum field with a background containing a Dirac delta function with support on a surface of codimension 1 represents a particular kind of matching conditions on that surface for the field. In this article we show that the worldline formalism can be applied to this model. We obtain the asymptotic expansion of the heat-kernel corresponding to a scalar field on Rd+1\mathbb{R}^{d+1} in the presence of an arbitrary regular potential and subject to this kind of matching conditions on a flat surface. We also consider two such surfaces and compute their Casimir attraction due to the vacuum fluctuations of a massive scalar field weakly coupled to the corresponding Dirac deltas.Comment: 12 page

    Boundaries in the Moyal plane

    Get PDF
    We study the oscillations of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. The space of quantum fluctuations of the field is finite dimensional and displays the rotational and parity symmetry of the disc. We perform a numerical evaluation of the (finite) Casimir energy and obtain similar results as for the fuzzy sphere and torus.Comment: 19 pages, 6 figures. Replaced by published versio

    Excitation energy dependence of symmetry energy of finite nuclei

    Get PDF
    A finite range density and momentum dependent effective interaction is used to calculate the density and temperature dependence of the symmetry energy coefficient Csym(rho,T) of infinite nuclear matter. This symmetry energy is then used in the local density approximation to evaluate the excitation energy dependence of the symmetry energy coefficient of finite nuclei in a microcanonical formulation that accounts for thermal and expansion effects. The results are in good harmony with the recently reported experimental data from energetic nucleus-nucleus collisions.Comment: 11 pages, 3 figures, revtex4; minor changes in text, axis label in figure 1 correcte

    Casimir effect in Snyder Space

    Full text link
    We show that two indistinguishable aspects of the divergences occurring in the Casimir effect, namely the divergence of the energy of the higher modes and the non-com\-pact\-ness of the momentum space, get disentangled in a given noncommutative setup. To this end, we consider a scalar field between two parallel plates in an anti-Snyder space. Additionally, the large mass decay in this noncommutative setup is not necessarily exponential.Comment: 15 pages, discussion regarding the large-mass asymptotics added, typos corrected, missing factor in eq. (1) correcte

    Symmetry energy of warm nuclear systems

    Full text link
    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.Comment: 12 pages, including 11 figures, appearing in special issue of EPJ-A on Nuclear Symmetry Energ
    • …
    corecore