55 research outputs found

    Molecular genetics of vestibular organ development

    Get PDF

    Functional and Genomic Analyses of Alpha-Solenoid Proteins

    Get PDF
    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/

    Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways

    No full text
    International audienceEukaryotic cells have several quality control pathways that rely on translation to detect and degrade defective RNAs. Dom34 and Hbs1 are two proteins that are related to translation termination factors and are involved in no-go decay (NGD) and nonfunctional 18S ribosomal RNA (rRNA) decay (18S NRD) pathways that eliminate RNAs that cause strong ribosomal stalls. Here we present the structure of Hbs1 with and without GDP and a low-resolution model of the Dom34-Hbs1 complex. This complex mimics complexes of the elongation factor and transfer RNA or of the translation termination factors eRF1 and eRF3, supporting the idea that it binds to the ribosomal A-site. We show that nucleotide binding by Hbs1 is essential for NGD and 18S NRD. Mutations in Hbs1 that disrupted the interaction between Dom34 and Hbs1 strongly impaired NGD but had almost no effect on 18S NRD. Hence, NGD and 18S NRD could be genetically uncoupled, suggesting that mRNA and rRNA in a stalled translation complex may not always be degraded simultaneously
    • …
    corecore