2,417 research outputs found

    Modular Workflow Engine for Distributed Services using Lightweight Java Clients

    Full text link
    In this article we introduce the concept and the first implementation of a lightweight client-server-framework as middleware for distributed computing. On the client side an installation without administrative rights or privileged ports can turn any computer into a worker node. Only a Java runtime environment and the JAR files comprising the workflow client are needed. To connect all clients to the engine one open server port is sufficient. The engine submits data to the clients and orchestrates their work by workflow descriptions from a central database. Clients request new task descriptions periodically, thus the system is robust against network failures. In the basic set-up, data up- and downloads are handled via HTTP communication with the server. The performance of the modular system could additionally be improved using dedicated file servers or distributed network file systems. We demonstrate the design features of the proposed engine in real-world applications from mechanical engineering. We have used this system on a compute cluster in design-of-experiment studies, parameter optimisations and robustness validations of finite element structures.Comment: 14 pages, 8 figure

    Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    Full text link
    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) In the "super-capacitor regime" of small voltages and/or early times where the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore. (ii) In the "desalination regime" of large voltages and long times, the porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration

    Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    Get PDF
    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts

    Anapole Moment and Other Constraints on the Strangeness Conserving Hadronic Weak Interaction

    Get PDF
    Standard analyses of low-energy NN and nuclear parity-violating observables have been based on a pi-, rho-, and omega-exchange model capable of describing all five independent s-p partial waves. Here a parallel analysis is performed for the one-body, exchange-current, and nuclear polarization contributions to the anapole moments of 133Cs and 205Tl. The resulting constraints are not consistent, though there remains some degree of uncertainty in the nuclear structure analysis of the atomic moments.Comment: Revtex, 10 pages, 1 figur

    The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA

    Get PDF
    Background The two variants of the α-form of the catalytic (C) subunit of protein kinase A (PKA), designated Cα1 and Cα2, are encoded by the PRKACA gene. Whereas Cα1 is ubiquitous, Cα2 expression is restricted to the sperm cell. Cα1 and Cα2 are encoded with different N-terminal domains. In Cα1 but not Cα2 the N-terminal end introduces three sites for posttranslational modifications which include myristylation at Gly1, Asp-specific deamidation at Asn2 and autophosphorylation at Ser10. Previous reports have implicated specific biological features correlating with these modifications on Cα1. Since Cα2 is not modified in the same way as Cα1 we tested if they have distinct biochemical activities that may be reflected in different biological properties. Results We show that Cα2 interacts with the two major forms of the regulatory subunit (R) of PKA, RI and RII, to form cAMP-sensitive PKAI and PKAII holoenzymes both in vitro and in vivo as is also the case with Cα1. Moreover, using Surface Plasmon Resonance (SPR), we show that the interaction patterns of the physiological inhibitors RI, RII and PKI were comparable for Cα2 and Cα1. This is also the case for their potency to inhibit catalytic activities of Cα2 and Cα1. Conclusion We conclude that the regulatory complexes formed with either Cα1 or Cα2, respectively, are indistinguishable

    Micron-scale intrashell oxygen isotope variation in cultured planktic foraminifers

    Get PDF
    In this study, we show that the rate of shell precipitation in the extant planktic foraminifer Orbulina universa is sufficiently rapid that 12 h calcification periods in 18O-labeled seawater can be resolved and accurately measured using secondary ion mass spectrometry (SIMS) for in situ δ18O analyses. Calcifying O. universa held at constant temperature (22 °C) were transferred every 12 h between ambient seawater (δ18Ow = −0.4‰ VSMOW) and seawater with enriched barium and δ18Ow = +18.6‰ VSMOW, to produce geochemically distinct layers of calcite, separated by calcite precipitated with an ambient geochemical signature. We quantify the position of the Ba-labeled calcite in the shell wall of O. universa via laser ablation ICP-MS depth profiling of trace element ratios, and then measure intrashell δ18Ocalcite in the same shells using SIMS with a 3 μm spot and an average precision of 0.6‰ (±2 SD). Measured δ18Ocalcite values in O. universa shell layers are within ±1.1‰ of predicted δ18Ocalcite values. Elemental and oxygen isotope data show that LA-ICP-MS and SIMS measurements can be cross-correlated within the spatial resolution of the two analytical techniques, and that δ18Ocalcite and elemental tracers appear to be precipitated synchronously with no measurable spatial offsets. These results demonstrate the capability of SIMS to resolve daily growth increments in foraminifer shells, and highlight its potential for paleoceanographic and biomineralization applications on microfossils

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    Mask-aligner Talbot lithography using a 193nm CW light source

    Get PDF
    • …
    corecore