37 research outputs found

    Body size and tree species composition determine variation in prey consumption in a forest-inhabiting generalist predator

    Get PDF
    Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb-weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider's diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator

    DNA-Based Diet Analysis for Any Predator

    Get PDF
    Background: Prey DNA from diet samples can be used as a dietary marker; yet current methods for prey detection require a priori diet knowledge and/or are designed ad hoc, limiting their scope. I present a general approach to detect diverse prey in the feces or gut contents of predators. Methodology/Principal Findings: In the example outlined, I take advantage of the restriction site for the endonuclease Pac I which is present in 16S mtDNA of most Odontoceti mammals, but absent from most other relevant non-mammalian chordates and invertebrates. Thus in DNA extracted from feces of these mammalian predators Pac I will cleave and exclude predator DNA from a small region targeted by novel universal primers, while most prey DNA remain intact allowing prey selective PCR. The method was optimized using scat samples from captive bottlenose dolphins (Tursiops truncatus) fed a diet of 6–10 prey species from three phlya. Up to five prey from two phyla were detected in a single scat and all but one minor prey item (2% of the overall diet) were detected across all samples. The same method was applied to scat samples from free-ranging bottlenose dolphins; up to seven prey taxa were detected in a single scat and 13 prey taxa from eight teleost families were identified in total. Conclusions/Significance: Data and further examples are provided to facilitate rapid transfer of this approach to any predator. This methodology should prove useful to zoologists using DNA-based diet techniques in a wide variety of study systems

    Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents

    Get PDF
    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks

    Ecological genetics of invasive alien species

    Full text link

    DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches

    Get PDF
    The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity
    corecore