17 research outputs found

    Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2

    Get PDF
    The conversion of hits to leads in drug discovery involves the elaboration of chemical core structures to increase their potency. In fragment-based drug discovery, low-molecular-weight compounds are tested for protein binding and are subsequently modified, with the tacit assumption that the binding mode of the original hit will be conserved among the derivatives. However, deviations from binding mode conservation are rather frequently observed, but potential causes of these alterations remain incompletely understood. Here, two crystal forms of the spliceosomal RNA helicase BRR2 were employed as a test case to explore the consequences of conformational changes in the target protein on the binding behaviour of fragment derivatives. The initial fragment, sulfaguanidine, bound at the interface between the two helicase cassettes of BRR2 in one crystal form. Second-generation compounds devised by structure-guided docking were probed for their binding to BRR2 in a second crystal form, in which the original fragment-binding site was altered due to a conformational change. While some of the second-generation compounds retained binding to parts of the original site, others changed to different binding pockets of the protein. A structural bioinformatics analysis revealed that the fragment-binding sites correspond to predicted binding hot spots, which strongly depend on the protein conformation. This case study offers an example of extensive binding-mode changes during hit derivatization, which are likely to occur as a consequence of multiple binding hot spots, some of which are sensitive to the flexibility of the protein

    Recruitment of a splicing factor to the nuclear lamina for its inactivation

    Get PDF
    Precursor messenger RNA splicing is a highly regulated process, mediated by a complex RNA-protein machinery, the spliceosome, that encompasses several hundred proteins and five small nuclear RNAs in humans. Emerging evidence suggests that the spatial organization of splicing factors and their spatio-temporal dynamics participate in the regulation of splicing. So far, methods to manipulate the spatial distribution of splicing factors in a temporally defined manner in living cells are missing. Here, we describe such an approach that takes advantage of a reversible chemical dimerizer, and outline the requirements for efficient, reversible re-localization of splicing factors to selected sub-nuclear compartments. In a proof-of-principle study, the partial re-localization of the PRPF38A protein to the nuclear lamina in HEK293T cells induced a moderate increase in intron retention. Our approach allows fast and reversible re-localization of splicing factors, has few side effects and can be applied to many splicing factors by fusion of a protein tag through genome engineering. Apart from the systematic analysis of the spatio-temporal aspects of splicing regulation, the approach has a large potential for the fast induction and reversal of splicing switches and can reveal mechanisms of splicing regulation in native nuclear environments

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Locked Nucleic Acids Can Enhance the Analytical Performance of Quantitative Methylation-Specific Polymerase Chain Reaction

    No full text
    Aberrant DNA methylation of tumor suppressor genes is a frequent epigenetic event that occurs early in tumor progression. Real-time quantitative methylation-specific polymerase chain reaction (QMSP) assays can provide accurate detection and quantitation of methylated alleles that may be potentially useful in diagnosis and risk assessment for cancer. Development of QMSP requires optimization to maximize analytical specificity and sensitivity for the detection of methylated alleles. However, in some cases challenges encountered in primer and probe design can make optimization difficult and limit assay performance. Locked nucleic acids (LNAs) demonstrate increased affinity and specificity for their cognate DNA sequences. In this proof-of-principle study, LNA residues were incorporated into primer and probe design to determine whether LNA-modified oligonucleotides could enhance the analytical performance of QMSP for IGSF4 promoter methylation in human cancer cell lines using either SYBR Green or fluorogenic probe detection methods. Use of LNA primers in QMSP with SYBR Green improved analytical specificity for methylated alleles and eliminated the formation of nonspecific products because of mispriming from unmethylated alleles. QMSP using LNA probe and primers showed an increased amplification efficiency and maximum fluorescent signal. QMSP with LNA oligonucleotides and either detection method could reliably detect five genome equivalents of methylated DNA in 1000- to 10,000-fold excess unmethylated DNA. Thus, LNA oligonucleotides can be used in QMSP optimization to enhance analytical performance

    Comparison of different normalization strategies for the analysis of glomerular microRNAs in IgA nephropathy

    No full text
    Small nucleolar RNAs (snoRNAs) have been used for normalization in glomerular microRNA (miRNA) quantification without confirmation of validity. Our aim was to identify glomerular reference miRNAs in IgA nephropathy. We compared miRNAs in human paraffin-embedded renal biopsies from patients with cellular-crescentic IgA-GN (n = 5; crescentic IgA-GN) and non-crescentic IgA-GN (n = 5; IgA-GN) to mild interstitial nephritis without glomerular abnormalities (controls, n = 5). Laser-microdissected glomeruli were used for expression profiling of 762 miRNAs by low-density TaqMan arrays (cards A and B). The comparison of different normalization methods (GeNormPlus, NormFinder, global mean and snoRNAs) in crescentic IgA-GN, IgA-GN and controls yielded similar results. However, levels of significance and the range of relative expression differed. In median, two normalization methods demonstrated similar results. GeNormPlus and NormFinder gave different top ranked reference miRNAs. Stability ranking for snoRNAs varied between cards A and B. In conclusion, we suggest the geometric mean of the most stable reference miRNAs found in GeNormPlus (miR-26b-5p), NormFinder (miR-28-5p) and snoRNAs (RNU44) as reference. It should be considered that significant differences could be missed using one particular normalization method. As a starting point for glomerular miRNA studies in IgA nephropathy we provide a library of miRNAs
    corecore