16 research outputs found

    Rapid changes in root HvPIP2; 2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

    Get PDF
    To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (Lp(Root)) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WTplants were capable of maintaining leaf water potential (psi(L)) that was likely due to increased Lp(Root) enabling higher water flow from the roots, which increased in response to air warming. The increased Lp(Root) and immunostaining for HvPIP2; 2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain psi(L) during air warming may be due to lower Lp(Root) than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and Lp(Root) was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10(-5) M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration

    Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34

    Get PDF
    Background and Aims Regulation of water channel aquaporins (AQPs) provides another mechanism by which abscisic acid (ABA) may influence water flow through plants. To the best of our knowledge, no studies have addressed the changes in ABA levels, the abundance of AQPs and root cell hydraulic conductivity (Lp(Cell)) in the same tissues. Thus, we followed the mechanisms by which ABA affects root hydraulics in an ABA-deficient barley mutant Az34 and its parental line 'Steptoe'. We compared the abundance of AQPs and ABA in cells to determine spatial correlations between AQP abundance and local ABA concentrations in different root tissues. In addition, abundance of AQPs and ABA in cortex cells was related to Lp(Cell). Methods Root hydraulic conductivity (Lp(Root)) was measured by means of root exudation analyses and Lp(Cell) using a cell pressure probe. The abundance of ABA and AQPs in root tissues was assessed through immunohistochemical analyses. Isoform-specific antibodies raised against HvPIP2; 1, HvPIP2; 2 and HvPIP2; 5 were used. Key Results Immunolocalization revealed lower ABA levels in root tissues of Az34 compared with ` Steptoe'. Root hydraulic conductivity (Lp(Root)) was lower in Az34, yet the abundance of HvPIPs in root tissues was similar in the two genotypes. Root hair formation occurred closer to the tip, while the length of the root hair zone was shorter in Az34 than in ` Steptoe'. Application of external ABA to the root medium of Az34 and ` Steptoe' increased the immunostaining of root cells for ABA and for HvPIP2; 1 and HvPIP2; 2 especially in root epidermal cells and the cortical cell layer located beneath, parallel to an increase in Lp(Root) and Lp(Cell). Treatment of roots with Fenton reagent, which inhibits AQP activity, prevented the ABA-induced increase in root hydraulic conductivity. Conclusion Shortly after (<2 h) ABA application to the roots of ABA-deficient barley, increased tissue ABA concentrations and AQP abundance (especially the plasma-membrane localized isoforms HvPIP2;1 and HvPIP2;2) were spatially correlated in root epidermal cells and the cortical cell layer located beneath, in conjunction with increased LpCell of the cortical cells. In contrast, long-term ABA deficiency throughout seedling development affects root hydraulics through other mechanisms, in particular the developmental timing of the formation of root hairs closer to the root tip and the length of the root hair zone

    Common and specific responses to availability of mineral nutrients and water

    No full text
    Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions

    ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived wheat.

    No full text
    Although nutrient deprivation alters the concentrations of several plant hormones, the role of each in decreasing shoot-to-root ratio is not clear. A 10-fold dilution of the nutrient concentration supplied to hydroponically-grown 7-day-old durum wheat (Triticum turgidum L. ssp. durum Desf.) plants decreased shoot growth, shoot-to-root ratio and shoot and root cytokinin concentrations, increased shoot ABA concentration and shoot cytokinin oxidase activity, but had no effect on xylem sap ABA and cytokinin concentrations. Nutrient deprivation also increased xylem concentrations of conjugated ABA. The role of ABA in these responses was addressed by adding 11.4 µm ABA to the nutrient solution of well fertilised plants, or 1.2 mm fluridone (an inhibitor of ABA biosynthesis) to the nutrient solution of nutrient-deprived plants. The former induced similar changes in shoot-to-root ratio (by inhibiting shoot growth), shoot ABA concentration, shoot and root cytokinin concentrations and shoot cytokinin oxidase activity as nutrient deprivation. Conversely, fluridone addition to nutrient-deprived plants restored shoot-to-root ratio (by inhibiting root growth), shoot ABA concentration, shoot and root cytokinin concentrations to levels similar to well fertilised plants. Although root growth maintenance during nutrient deprivation depends on a threshold ABA concentration, shoot growth inhibition is independent of shoot ABA status. Although fluridone decreased shoot cytokinin oxidase activity of nutrient-deprived plants, it was still 1.7-fold greater than well fertilised plants, implying that nutrient deprivation could also activate shoot cytokinin oxidase independently of ABA. These data question the root signal basis of cytokinin action, but demonstrate that changes in ABA status can regulate shoot cytokinin concentrations via altering their metabolism

    Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP)

    No full text
    Cytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots. To this end, we collapsed the proton gradient across root membranes using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to inhibit secondary active uptake of exogenous and endogenous cytokinins. We report the impact of CCCP on cytokinin concentrations and delivery in xylem sap and on accumulation in shoots of 7-day-old wheat plants in the presence and absence of exogenous cytokinin applied as zeatin. Zeatin treatment increased the total accumulation of cytokinin in roots and shoots but the effect was smaller for the shoots. Immunohistochemical localization of cytokinins using zeatin-specific antibodies showed an increase in immunostaining of the cells adjacent to xylem in the roots of zeatin-treated plants. Inhibition of secondary active cytokinin uptake by CCCP application decreased cytokinin accumulation in root cells but increased both flow from the roots and accumulation in the shoots. The possible importance of secondary active uptake of cytokinins by root cells for the control of their export to the shoot is discussed
    corecore