

Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

Journal:	Functional Plant Biology
Manuscript ID	FP16242.R1
Manuscript Type:	Research paper
Date Submitted by the Author:	20-Sep-2016
Complete List of Authors:	Veselov, Dmitry; Institute of Biology Ufa SC RAS, Plant Physiology Sharipova, Guzel; Institute of Biology Ufa SC RAS, Plant Physiology Veselov, Stanislav; Baskirskij Gosudarstvennyj Universitet, Biology Dodd, Ian; University of Lancaster, Dept of Biological Sciences Ivanov, Igor; Institute of Biology Ufa SC RAS, Plant Physiology Kudoyarova, Guzel; Institute of Biology Ufa SC RAS, Plant Physiology
Keyword:	Abscisic acid, Aquaporins, Hydraulic conductivity, Water relations

SCHOLARONE[™] Manuscripts

- 1 Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are
- 2 required to enhance root hydraulic conductivity and maintain leaf water potential in
- 3 response to increased evaporative demand
- 4
- 5 Dmitry S. Veselov^A, Guzel V. Sharipova^A, Stanislav Yu. Veselov^B, Ian C. Dodd^C, Igor Ivanov^A,
- 6 Guzel R. Kudoyarova^{A,D}
- ^A Ufa Institute of Biology of Russian Academy of Sciences, 450054 Ufa, Russia
- ⁸ ^BBiological Faculty of Bashkir State University, 450073, Ufa Russia
- ⁹ ^CLancaster Environment Centre, Lancaster University, Lancashire LA1 4YQ, UK
- ¹⁰ ^D Corresponding author. Email: guzel@anrb.ru
- 11
- 12
- 13

14 Abstract. To address the involvement of abscisic acid (ABA) in regulating transpiration and root 15 hydraulic conductivity (Lp_{Root}) and their relative importance for maintaining leaf hydration, the 16 ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were 17 grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) 18 imposed by air warming. WT plants were capable of maintaining leaf water potential (Ψ_L) that 19 was likely due to increased Lp_{Root} enabling higher water flow from the roots, which increased in 20 response to air warming. The increased Lp_{Root} and immunostaining for HvPIP2;2 aquaporins 21 correlated with increased root ABA content of WT plants when exposed to increased air 22 temperature. The failure of Az34 to maintain Ψ_L during air warming may be due to lower Lp_{Root} 23 than WT plants, and an inability to respond to changes in air temperature. The correlation 24 between root ABA content and Lp_{Root} was further supported by increased root hydraulic 25 conductivity in both genotypes when treated with exogenous ABA (10^{-5} M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic 26 27 conductivity) seems important to maintain leaf hydration. 28

29 Additional keywords: *Hordeum vulgare* L., absicisic acid, tissue hydration, water relations.

31 Introduction

Maintaining tissue hydration is of pivotal importance for plant survival under a changing environment. This is achieved by fine regulation of leaf water relations, which is largely dependent on coordinated changes in stomatal and hydraulic conductivity (Meinzer 2002). Although both mechanisms are important for maintaining the balance between water uptake and losses, the former has attracted much more attention (Dodd, 2005; 2013 and references therein).

37 The discovery of the membrane located water channel proteins aquaporins, whose activity 38 alters hydraulic conductivity (Maurel et al. 2008; Chaumont and Tyerman, 2014), led to an 39 increase in research addressing the control of plant water uptake. The plant hormone abscisic 40 acid (ABA), whose concentration increases in response to water deficit, can influence both 41 stomatal (see ref. in review of Dodd 2005) and root and shoot hydraulic conductivity (Hose et al. 42 2000; Pantin et al. 2013), the latter effect being due to ABA-induced increase in activity of 43 aquaporins (Parent et al. 2009). Thus the same hormone can induce opposite influences on water 44 relations by either decreasing water flow due to stomatal closure, or increasing it by modulating 45 hydraulic conductivity. The resulting effect may depend on the site of ABA accumulation in 46 stressed plants: foliar ABA accumulation directly closes the stomata (McAdam et al 2016) and 47 reduces transpiration by decreasing leaf hydraulic conductivity (Pantin et al. 2013), while root 48 ABA accumulation increases hydraulic conductivity in a dose-dependent manner (Hose et al. 49 2000; Kudoyarova et al. 2011; Dodd 2013).

50 When plants experience a sudden increase in evaporative demand (eg. by warming the air 51 that surrounds them), increased root ABA concentration was correlated with increased root 52 hydraulic conductivity (Kudoyarova et al. 2011). However, using ABA-deficient or ABA-53 overproducing plants provides more specific evidence that ABA regulates root hydraulic 54 conductivity and maintains leaf water relations. Genetic modification of ABA levels caused long 55 lasting effects on plant hydraulic properties and aquaporin activity in maize (Parent et al. 2009) 56 and tomato (Thompson et al. 2007) plants. However, the role of ABA in regulating plant water 57 relations is likely to be most critical in response to abrupt step-changes in environmental 58 conditions. Thus we compared leaf water relations, AQPs abundance and ABA content and 59 localization in roots of the ABA deficient barley mutant (Az34) and its parental line cv. Steptoe 60 in response to air heating (that increased evaporative demand). The goal of the work was to 61 check the ability of the root system to rapidly regulate ABA levels (and thence hydraulic 62 conductivity) and its importance to maintain leaf hydration.

63

64 Material and Methods

65 Seedlings of barley Hordeum vulgare L. (ABA deficient mutant Az34 and its wild-type cv. 66 Steptoe) were grown in 3-litre containers filled with 0.1 strength Hoagland-Arnon nutrient solution under illumination of 400 μ mol m⁻² s⁻¹ from ZN and DNAT-400 fluorescent lamps, at a 67 68 14-h photoperiod (from 8:00 to 22:00), 24°C air temperature and 40 % relative air humidity 69 (which corresponds to VPD of 2 kPa). When plants were 7-d-old and bearing one true leaf that 70 was half-expanded, the air temperature was increased by 4° C from 24° C to 28° C (increase in 71 VPD from 2 up to 2.6 kPa) and maintained at that level for 1 hour using a fan-heater, taking care 72 not to direct the airflow directly on to the shoots. Experiments started at 11:00.

Transpiration was measured as a loss of weight during 15 min by 10 intact plants drawing
water from 50 ml of nutrient solution in a container covered with aluminium foil to minimise
surface evaporation. Stomatal conductance was determined with a porometer Model AP4, Delta
T Devices, United Kingdom).

Leaf water potential (Ψ_L) of tissue discs of 7 mm diameter were punched from mature leaves, placed immediately on clean sample holders and wrapped in aluminium foil to minimize water losses. After 16 discs had been collected (approximately 15 min), they were unwrapped and then loaded into C52 chambers (Wescor Inc., Logan, UT, USA), incubated for 2 h then voltages were read with a microvoltmeter (model HR-33T-R; Wescor Inc., Logan, UT, USA). Voltages were converted into water potentials based on calibration with salt solutions of known osmotic potential.

84 Xylem sap flow from detached root systems was measured according to Carvajal et al. 85 (1996) with modifications described by Veselov et al. (2008) and Vysotskaya et al. (2004). 86 Applying the method for measuring Lp_{Root} in plants after air heating is described in detail by 87 Kudoyarova et al. (2011). In short, the aerial parts of the plant were removed leaving a cylinder 88 of leaf bases. These were connected to thin pre-weighed capillaries by means of silicon tubing. 89 Xylem sap flow was measured in this way at 20°C for all plants. After 1 h, the capillary 90 containing osmotically-driven xylem sap was disconnected from the root system and weighed. 91 The procedure was started after transpiration had stabilized following air heating (normally after 92 40 min). Xylem sap flow was measured in this way for all plants (either control i.e. kept at 24 $^{\circ}$ C 93 all the time or exposed to 28 °C for about 40 min). In some cases ABA (10⁻⁵ M) was added to the 94 nutrient solution of control Az34 and Steptoe plants 15 min before the start of sap collection and 95 was present in the solution during xylem sap collection. Bleeding sap from each capillary was 96 diluted five times to provide sufficient sample for measurement of osmotic potential using a 97 freezing point depression osmometer (Osmomat 030, Germany). In preliminary experiments, 98 proportionality of the effect of dilution on the obtained values was checked. Root hydraulic 99 conductivity, Lp_{Root} was calculated according to equation: $Lp_{Root} = J/((\Psi_s - \Psi_x) \times FW)$ where J is

Functional Plant Biology

100 the bleeding sap flow rate and $(\Psi_s - \Psi_x)$ the difference in osmotic pressure between xylem sap 101 and root medium and FW is the root fresh weight: a root solute reflection coefficient of 1.0 was 102 used (Knipfer and Fricke 2010). Because roots were dipped in 0.1 strength Hoagland-Arnon 103 nutrient solution with near-zero osmolality, the gradient of osmotic pressure was equal to Ψ_x .

104 To inhibit AQP activity, hydroxyl radicals (*OH) were produced through the Fenton reaction 105 (Fe²⁺+H₂O₂= Fe³⁺+OH⁻+*OH) by mixing equal volumes of 6 mM H₂O₂ and 6 mM FeSO4 (Ye 106 and Steudle 2006).

Excised roots might have lower Lr as shown by Vandeleur et al (2014) since the measured values of hydraulic conductivity are the result of osmotically induced flow rather than hydrostatic induced flow. However, since osmotically driven flow depends on aquaporins, our measurements seems appropriate within the context of the research problem posed

111 ABA was immunoassayed as previously described (Vysotskaya et al. 2009) in the roots of 112 control plants (continuously kept at 24 °C) and exposed to air heating (after transpiration had 113 stabilised about 40 min after the start of experiment). Aqueous residues of ethanol extracts were 114 diluted with distilled water, acidified with HCl to pH 2.5 and partitioned twice with peroxide-115 free diethyl ether (ratio of organic to aqueous phases was 1:3). Subsequently hormones were 116 transferred from the organic phase into 1% sodium hydrocarbonate (pH 7-8, ratio of organic to 117 aqueous phases was 3:1), re-extracted with diethyl ether after acidification to pH 2.5, methylated 118 with diazomethane and immunoassayed using antibodies to ABA (Veselov et al. 1992). ABA 119 recovery calculated in model experiments was about 80%. Reducing the amount of extractant, 120 based on the calculated distribution of ABA in organic solvents, increased the selectivity of 121 hormone recovery and the reliability of immunoassay. The reliability of the immunoassay for 122 ABA was enabled by both specificity of antibodies and purification of hormones according to a 123 modified scheme of solvent partitioning (Veselov et al. 1992).

124 For immunolocalization of AQPs, root sections were harvested from control Steptoe and 125 Az34 plants. Root tip segments 3-5 mm in length were fixed in 4% carbodiimide (1-ethyl-3-(3-126 dimethylaminopropyl) carbodiimide, Sigma, United States) for 4 h as described earlier 127 (Sharipova et al. 2016). Tissues were infiltrated with carbodiimide under vacuum during the first 128 30 min of fixation. After dehydration in ethanol solutions of increasing grades (up to 96%), 129 samples were embedded in the methacrylate resin (JB-4, Electron Microscopy Sciences, United 130 States) as recommended by manufacturers. Histological sections (1.5 µm thickness) were cut 131 with the rotation microtome (HM 325, MICROM Laborgerate, Germany) and placed on slides. 132 Immunolocalization was performed as described earlier (Sharipova et al. 2016). Sections were 133 treated with 0.1 M Na-phosphate buffer (pH 7.3) containing 0.2% gelatin and 0.05% Tween 20 134 (PGT) for 30 min. Rabbit anti-ABA serum (20 µl), and diluted with PGT at the ratio of 1 : 80,

Functional Plant Biology

135 was poured on some sections. To check specificity of immunostaining, other sections were 136 treated with non-immune serum at similar dilution. Sections were covered with 50 µl 0.1 M 137 phosphate buffer (pH 7.2–7.4) with 0.2% gelatine and 0.05% Tween 20 (PGT) and incubated for 138 30 min in a moist chamber. Serum and gold conjugates were diluted with PGT. Sections washed 139 with distilled water were incubated with immune serum to HvPIP2;1, HvPIP2;2 and HvPIP2;5 140 aquaporins for 2 h in a moist chamber. Polyclonal antibodies for HvPIP2s were raised in rabbits 141 against synthetic oligopeptides (Medical & Biological Laboratories Co., Japan) corresponding to 142 the amino acid sequences in the N- region of HvPIP2;1 (Katsuhara et al. 2002), HvPIP2;2 (Horie 143 et al. 2011), and HvPIP2;5 (Sharipova et al., 2016). Control sections were treated with rabbit 144 nonimmune serum. To visualize serum binding with aquaporins, sections were treated with gold 145 conjugate (BBInt, United Kingdom) for 1 h in a moist chamber. After three washes with PT 146 samples were incubated with silver enhancer (BBInt, United Kingdom) for 15–20 min in dark 147 and examined under a light microscope. Excess silver was removed with distilled water. 148 Preparations were visualized under an Axio Imager.A1 light microscope (Carl Zeiss Jena, 149 Germany) equipped with an AxioCam MRc5 digital camera (Carl Zeiss Jena, Germany).

150 Intensity of immunostaining of plasmalemma aquaporins was estimated from 8-bit 151 grayscale images using ImageJ software (v.1.48, National Institutes of Health). Staining values, 152 obtained by determining the pixel intensity, were averaged for each root section (about 160 153 circles per image of one root section). Intensity of root section staining was measured by using 154 the "Freehand Selections" Tool of the same software by selecting the entire area of root sections 155 and measuring mean pixel intensities within the region of interest. Images were taken from 9 156 independent sections per genotype or temperature-treatment. Intensity of staining was expressed 157 in arbitrary units, maximal staining of circles within root section images was taken as 100 %, 158 while minimal staining was 0 %.

159 Significant differences between treatments were determined by employing an analysis of 160 variance (ANOVA) using the Excel software. The least squares difference (LSD) test was 161 performed to discriminate significant (p<0.05) treatment differences.

162 **Results**

163 Transpiration of Az34 plants was initially 45% higher than in Steptoe plants (Fig. 1). Air heating 164 increased transpiration rate of Steptoe and Az34 plants by 39% and 25% respectively with 165 Steptoe plants ultimately transpiring at the same rate as Az34 plants under control conditions.

166 Stomatal conductance of Steptoe and Az34 plants was about 55 and 70 mmol m⁻² s⁻¹, 167 respectively (statistically different at p<0.05, n=10) and did not change significantly with the air 168 warming. Page 7 of 24

Functional Plant Biology

169 Leaf water potential ($\Psi_{\rm L}$) was measured after transpiration stabilized about 40 min after the 170 start of air heating. Leaf water potential of Az34 was 0.32 MPa lower than that of parental cv. 171 Steptoe under control conditions, and decreased by another 0.23 MPa with the increase in air 172 temperature, while it did not significantly change in Steptoe plants (Table 1).

173 Xylem sap flowed from detached WT roots about 2 times faster than in Az34 (Fig. 2a). Air 174 heating increased the flow rate from WT roots by about 1.5 times but did not influence that of 175 Az34. Adding ABA to the nutrient solution of Az34 plants increased xylem sap flow rate 2.6-176 fold. The increase in Steptoe was of less magnitude (only 1.6-fold), but also statistically 177 significant. Since the driving force for osmotically driven flow of xylem sap was the same in 178 both genotypes and did not change significantly with air heating (Table 1), a similar pattern of 179 Lp_{Root} was detected in the plants: lower level in Az34 plants, increase in Steptoe with the air 180 heating and no response to air heating in Az34 plants (Fig. 2b). Adding ABA to the nutrient 181 solution increased Lp_{Root} of both Az34 and Steptoe plants. Thus ABA treatment increased Lp_{Root} 182 of Steptoe plants kept at control temperature to the level of heated Steptoe plants, while this 183 exogenous hormone increased Lp_{Root} of Az34 plants to the level of Steptoe control plants. 184 Inhibiting AQP activity by producing reactive hydroxyl radicals during the Fenton reaction 185 decreased hydraulic conductivity of both genotypes, however the extent of decline was greater in 186 the plants under air warming suggesting that AQPs contribute to the increased hydraulic 187 conductivity under this treatment (Table 1).

- 188 In Steptoe plants changes in transpiration induced by air warming strongly correlated with 189 the increase in hydraulic conductivity (r=0.87), while in the case of Az34 the correlation was 190 moderate (r=0.56).
- 191 Bulk root ABA concentration of Steptoe plants was ~50% higher than in Az34 plants and 192 further increased with air heating (Fig. 3). No significant changes in ABA content were detected 193 in the roots of Az34 plants following air warming.
- 194 Air warming increased immunostaining for HvPIP2;2 aquaporins in the roots of Steptoe 195 (Fig. 4, Table 3), but no such effect was detected in Az34. Increased air temperature did not 196 affect the abundance of HvPIP2;1 or HvPIP2;5 aquaporins in either Az34 or Steptoe roots.
- 197

198 Discussion

199 Previous experiments have addressed long-term effects (days to weeks) of ABA deficiency on 200 leaf elongation and stomatal conductance of barley plants exposed to dry or compacted soil 201 (Mulholland et al. 1996; Martin-Vertedor and Dodd, 2011). In accordance with these earlier 202 reports, leaf water potential (Ψ_L) was lower in Az34 than WT plants (Table 1), likely due to the higher transpiration rate of Az34 plants (Fig. 1). The latter effect is apparently explained by ABA's ability to close stomata and its reduced level in ABA deficient Az34 plants (Mulholland et al. 1996; Martin-Vertedor and Dodd, 2011). Although air warming increased transpiration of Steptoe plants almost to the level of Az34 plants (measured before air warming – Fig. 1), Ψ_L of Steptoe was not decreased by this treatment (Table 1). This suggests that the lower Ψ_L of Az34 was not entirely due to altered stomatal behaviour.

209 Previously, air warming increased transpiration of wheat plants several-fold (Kudoyarova 210 et al. 2011), which was due to increased stomatal conductance. Transpiration increased to a 211 lesser extent (20-30% - Fig. 1) in both barley genotypes (due to the absence of changes in 212 stomatal conductance) and caused a drop in leaf water potential in Az34 plants but no effect in 213 Steptoe (Table 1). This suggests that elevated transpiration of Steptoe plants was balanced by 214 higher water flow from the roots, which was supported experimentally by measuring xylem sap 215 flow from the roots (Fig. 2). While air warming increased xylem flow in Steptoe plants, there 216 was no change in Az34 plants, suggesting impaired functionality of the ABA-deficient barley 217 roots.

218 Experiments with both exogenous ABA application to roots (Hose et al. 2000), and 219 transgenic ABA-overproducing plants (Thompson et al. 2007) have shown that increased ABA 220 concentrations result in increased root hydraulic conductance. In agreement, hydraulic 221 conductance of both genotypes was increased by exogenous ABA in the present experiments 222 (Fig. 2). Consequently the increased hydraulic conductivity and abundance of PIP2;2 detected in 223 Steptoe roots under air warming and the lack of response in Az34 is likely related to the 224 increased root ABA concentration of the former and to the unchanged ABA levels of the latter 225 (Fig. 3). ABA involvement in modulating aquaporin abundance in barley plants is supported by 226 experiments demonstrating increased PIPs abundance in ABA treated roots of Az34 and Steptoe 227 plants (Sharipova et al., 2016).

228 Perturbed water relations are characteristic of ABA deficient plants, and most frequently 229 explained by their failure to control stomatal conductance (Neil and Horgan 1985; Makela et al. 230 2003). ABA is important in this respect under conditions that require stomatal closure to 231 maintain leaf water status. On the contrary, adaptation to increased air temperature demands 232 maintaining high transpiration rates to allow plant cooling (Reynolds et al., 1998). Under high 233 evaporative demand, increased root hydraulic conductance may serve as the main mechanism 234 increasing water flow from the roots thereby maintaining increased transpiration (Tardieu et al. 2010). Previous experiments with inhibition of phloem transport have shown that under air 235 236 warming, root ABA accumulation was mainly the outcome of increased export from the shoots

Functional Plant Biology

(Kudoyarova et al., 2011). Thus ABA-controlled changes in (root) hydraulic conductivity is alsoof great importance for maintaining water balance of the plants.

- 239 Molecular genetic approaches allow manipulation of ABA level (e.g. transgenic plants 240 overproducing ABA - Thompson et al. 2007) but negative effects of ABA on plant productivity 241 may be expected since crop yield is often positively related to transpiration (Collins et al. 2008; 242 Blum, 2015). However experiments with tomato plants overproducing ABA showed that 243 increased ABA levels may improve water supply to the shoot, thereby maintaining water status 244 when evaporative demand is high (Thompson et al. 2007). Thus ABA may act as a growth-245 promoter via its effect on aquaporin activities, which is expected to have a greater influence 246 under high evaporative demand (Tardieu et al. 2010). Our results confirm these suggestions by 247 showing that sufficient ABA is necessary to adequately control root hydraulic conductivity 248 (Lp_{Root}) in barley following a step-change in VPD under air warming.
- 249

250 Acknowledgments

The specific antibodies against HvPIP2 aquaporins was a gift from Prof. Maki Katsuhara
(Okayama University, Japan). This work was supported by grant of the Russian Foundation for
Basic Researches (RFBR No. 14-04-97077).

254

255 References

- Blum A (2015) Towards a conceptual ABA ideotype in plant breeding for water limited
 environments. *Functional Plant Biology* 42, 502-513.
- Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrition deprivation
 may involve the regulation of water-channel function. *Planta* 199, 372–381.
- Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water
 relations. *Plant Physiology* 164, 1600–1618.
- 262 Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under
 263 abiotic stress: where do we stand? *Plant Physiology* 147, 469–486.
- Dodd IC (2005) Root-to-shoot signalling: Assessing the roles of 'up' in the up and down world
 of long-distance signaling in planta. *Plant & Soil* 274, 257-275.
- 266 Dodd IC (2013) Abscisic acid and stomatal closure: a hydraulic conductance conundrum? *New* 267 *Phytologist* 197, 6-8.
- Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011)
 Mechanisms of water transport mediated by PIP aquaporins and their regulation via
 phosphorylation events under salinity stress in barley roots. *Plant & Cell Physiology* 52, 663–675.

- Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductance of maize roots: a
 study using cell- and root-pressure probes. *Planta* 211, 874–882.
- Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of
 water channels in barley roots. *Plant & Cell Physiology* 43, 885–893.
- Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to wholeplant water flow in barley (*Hordeum vulgare* L.). *Journal of Experimental Botany* 62,
 717-733.
- Kudoyarova G, Veselova S, Hartung W, Farhutdinov R, Veselov D, Sharipova G (2011)
 Involvement of root ABA and hydraulic conductance in the control of water relations in
 wheat plants exposed to increased evaporative demand. *Planta* 233, 87-94.
- Makela P, Munns R, Colmer TD, Peltonen-Sainio P (2003) Growth of tomato and an ABAdeficient mutant (sitiens) under saline conditions. *Physiologia Plantarum* 117, 58–63.
- Martin-Vertedor AI, Dodd IC (2011) Root-to-shoot signalling when soil moisture is
 heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf
 growth and increases leaf abscisic acid concentration. *Plant, Cell & Environment* 34, 1164–1175.
- Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with
 multiple integrated functions. *Annual Review of Plant Biology* 59, 595–624.
- McAdam SAM, Sussmilch FC, Brodribb TJ (2016) Stomatal responses to vapour pressure deficit
 are regulated by high speed gene expression in angiosperms. *Plant, Cell & Environment*39, 485–491.
- Meinzer FG (2002) Co-ordination of vapour and liquid phase water transport properties in
 plants. *Plant, Cell & Environment* 25, 265–274.
- Mulholland BJ, Taylor B, Black CR, Roberts JA (1996) Effect of soil compaction on barley
 (*Hordeum vulgare* L.) growth II. Are increased xylem sap ABA concentrations involved
 in maintaining leaf expansion in compacted soils? *Journal of Experimental Botany* 47,
 551-556.
- Neill SJ, Horgan R (1985) Abscisic acid production and water relations in wilty tomato mutants
 subjected to water deficiency. *Journal of Experimental Botany* 36, 1222-1231.
- Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013)
 The dual effect of abscisic acid on stomata. *New Phytologist* 197, 65–72.
- Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and
 abscisic acid effects on aquaporin content translate into changes in hydraulic conductance
 and leaf growth rate: a trans-scale approach. *Plant Physiology* 149, 2000-2012.

Functional Plant Biology

306	Reynolds MP, Singh RP, Ibrahim A, Ageeb OA, Larque-Saavedra A, Quick JS (1998)				
307	Evaluating physiological traits to complement empirical selection for wheat in warm				
308	environments. Euphytica 100, 85–94.				
309	Sharipova G, Veselov D, Kudoyarova G, Fricke W, Dodd IC, Katsuhara M, Furuichi T, Ivanov I,				
310	Veselov S (2016) Exogenous application of abscisic acid (ABA) increases root and cell				
311	hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient				
312	barley mutant Az34. Annals of Botany. doi:10.1093/aob/mcw117				
313	Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or				
314	non-hydraulic processes? Plant, Cell & Environment 33, 636-647.				
315	Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GR,				
316	Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid				
317	in tomato increases transpiration efficiency and root hydraulic conductance and				
318	influences leaf expansion. Plant Physiology 143, 1905–1917.				
319	Vandeleur RK, Sullivan W, Athman A, Jordans C, Gilliham M, Kaiser BN, Tyerman SD (2014)				
320	Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.				
321	Plant Cell and Environment 37 , 520-538.				
322	Veselov DS, Sharipova GV, Veselov SU, Kudoyarova GR (2008) The effects of NaCl treatment				
323	on water relations, growth and ABA content in barley cultivars differing in drought				
324	tolerance. Journal of Plant Growth Regulation 27, 380-386.				
325	Veselov S, Kudoyarova G, Egutkin N, Gyuli-Zade V, Mustafina A, Kof E (1992) Modified				
326	solvent partitioning scheme providing increased specificity and rapidity of immunoassay				
327	for indole 3-acetic acid. Physiologia Plantarum 86, 93-96.				
328	Vysotskaya LB, Arkhipova TN, Timergalina LN, Dedov AV, Veselov SY, Kudoyarova GR				
329	(2004) Effect of partial root excision on transpiration, root hydraulic conductance and				
330	leaf growth in wheat seedlings. Plant Physiology & Biochemistry 42, 251-255.				
331	Vysotskaya LB, Korobova AV, Veselov SY, Dodd IC, Kudoyarova GR (2009) ABA mediation				
332	of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass				
333	allocation of nutrient deprived durum wheat. Functional Plant Biology 36, 66-72.				
334					

339

336Table 1. Leaf water potential (Ψ_1) and gradient of osmotic potential ($\Delta\Psi$) osmotic pressure337338338Staffstram sand Ψ_n) collected prior to and Φ with after the start of signature (Ψ_n) collected prior to and Φ with after the start of signature (Ψ_n) (Ψ_n) collected prior to and Φ with after the start of Ψ_n) (Φ_n)

Genotype Treatment time Ψ_1 (MPa) Ψ_{x} (min) 0 -0.57 ± 0.08^{a} 0.32 ± 0.01^{a} Steptoe -0.43 \pm 0.05 a $0.25\pm0.03~^a$ 40 -0.89 ± 0.06^{b} 0.35 ± 0.06^{a} 0 Az34 $0.34 \pm 0.02^{\ a}$ $-1.12 \pm 0.09^{\circ}$ 40

340

342 Table 2. Effect of inhibiting AQP activity by producing reactive hydroxyl radicals during

343 the Fenton reaction on root hydraulic conductance (mg h⁻¹ g⁻¹ root fresh weight MPa⁻¹) of

344 roots excised from the barley plants prior to and 40 min after the start of air warming.

345 Significantly different means for each variable are labelled with different letters (n=5, LSD

- 346 **test**).
- 347

Genotype, treatment	Control	Increased air
		temperature
Steptoe, - Fenton	$320 \pm 41^{\circ}$	$590 \pm 61^{\rm d}$
Az34, - Fenton	130 ± 19^{ab}	170 ± 21^{b}
Steptoe, +Fenton	165 ± 22^{b}	$280 \pm 31^{\circ}$
Az34, +Fenton	82 ± 9^{a}	110 ± 16^{ab}

348

350 Table 3. Intensity of staining for HvPIP2 aquaporins of control and treated of ABA 351

deficient (Az34) mutant and parental cv. (Steptoe)

- 352 Means \pm SE, arbitrary units, maximal staining of circles within section images was taken for 100
- 353 %, while minimal staining was 0 %. Significantly different means for each variable are labelled
 - with different letters (n=9, LSD test)
- 354 355
- 356

Staining for	Steptoe		Az34	
	Control	Increased air temperature	Control	Increased air temperature
HvPIP2;1	25+7 ^a	29+4 ^a	29 ± 8^{a}	31 ± 14^{a}
HvPIP2;2	20 ± 6^{a}	71+9 ^b	31 ± 7^{a}	25± 12 ^a
HvPIP2;5	69+9 ^a	57+7 ^a	59 ± 11^{a}	49 ± 15^{a}

Fig. 1. Effect of air warming on transpiration (normalized to leaf area) of Steptoe and Az34plants. Arrow indicates sampling time for ABA assay, root excision for hydraulic conductivity

plants. Arrow indicates sampling time for ABA assay, root excision for hydraulic conductivity
 measurements and tissue fixation for immunolocalization. Data are means ±SE of 10 plants.

Fig. 2. Xylem sap flow (a), and root hydraulic conductivity (b) of Steptoe and Az34 plants measured in control plants exposed to 24 $^{\circ}$ C and 40 min after the start of temperature increase (temp). ABA (10⁻⁵ M) was added to the nutrient solution of control Steptoe and Az34 plants 20 min before the start and was present in the nutrient solution during the time of xylem sap collection. Statistically different values (P<0.05) are labeled with different letters

371

Fig. 3. Bulk root ABA content (mean values \pm SE, n=5) of Steptoe and Az34 plants measured in

373 control plants exposed to 24 °C and 40 min after the start of temperature increase (temp).

374 Statistically different values (P<0.05) are labeled with different letters

Fig. 4. Immunohistochemical localization of HvPIP2;2 AQPs in root sections (3-5 mm from the

- 378 tip where root hairs appeared) of Steptoe (a,c) and Az34 (b,d) plants. a,b control plants; c,d -
- 379 plants exposed to air warming for 40 min.
- 380

Genotype	Treatment time	Ψ_1 (MPa)	Ψ _x
	(min)		
Steptoe	0	-0.57 ± 0.08 ^a	0.32 ± 0.01^{a}
	40	-0.43 ± 0.05 ^a	$0.25\pm0.03~^a$
Az34	0	-0.89 ± 0.06 ^b	0.35 ± 0.06^{a}
	40	$-1.12 \pm 0.09^{\circ}$	0.34 ± 0.02^{a}

Table 1. Leaf water potential (Ψ_l) and gradient of osmotic potential $(\Delta \Psi)$ -osmotic pressure of xylem sap (Ψ_x) collected prior to and 40 min after the start of air warming Statistically different values (n=10) are labeled with different letters (LSD-test p≤0.05) Table 2. Effect of inhibiting AQP activity by producing reactive hydroxyl radicals during the Fenton reaction on root hydraulic conductance (mg h⁻¹ g⁻¹ root fresh weight MPa⁻¹) of roots excised from the barley plants prior to and 40 min after the start of air warming. Significantly different means for each variable are labelled with different letters (n=5, LSD test).

Genotype, treatment	Control	Increased air
		temperature
Steptoe, - Fenton	$320 \pm 41^{\circ}$	590 ± 61^d
Az34, - Fenton	130 ± 19^{ab}	170 ± 21^{b}
Steptoe, +Fenton	165 ± 22^{b}	$280 \pm 31^{\circ}$
Az34, +Fenton	82 ± 9^{a}	110 ± 16^{ab}

Table 3. Intensity of staining for HvPIP2 aquaporins of control and treated of ABAdeficient (Az34) mutant and parental cv. (Steptoe)

Means ± SE, arbitrary units, maximal staining of circles within section images was taken for 100 %, while minimal staining was 0 %. Significantly different means for each variable are labelled with different letters (n=9, LSD test)

Staining for	Steptoe		Az34		
	Control	Increased air temperature	Control	Increased air temperature	
HvPIP2;1	25+7 ^a	29+4 ^a	29 ± 8^{a}	31 ± 14^{a}	
HvPIP2;2	20 ± 6^{a}	71+9 ^b	31 ± 7^{a}	25± 12 ^a	
HvPIP2;5	69+9 ^a	57+7 ^a	59 ± 11^{a}	49 ± 15^{a}	

Effect of air warming on transpiration (normalized to leaf area) of Steptoe and Az34 plants. Arrow indicates sampling time for ABA assay, root excision for hydraulic conductivity measurements and tissue fixation for immunolocalization. Data are means ±SE of 10 plants.

Fig. 1. 89x87mm (300 x 300 DPI)

Xylem sap flow (a), and root hydraulic conductivity (b) of Steptoe and Az34 plants measured in control plants exposed to 24 oC and 40 min after the start of temperature increase (temp). ABA (10-5 M) was added to the nutrient solution of control Steptoe and Az34 plants 20 min before the start and was present in the nutrient solution during the time of xylem sap collection. Statistically different values (P<0.05) are labeled with different letters Fig. 2. 162x64mm (300 x 300 DPI)

Bulk root ABA content (mean values \pm SE, n=5) of Steptoe and Az34 plants measured in control plants exposed to 24 oC and 40 min after the start of temperature increase (temp). Statistically different values (P<0.05) are labeled with different letters

Fig 3 79x78mm (300 x 300 DPI)