1,166 research outputs found

    Legendrian and transverse twist knots

    Full text link
    In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the m(52)m(5_2) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least nn different Legendrian representatives with maximal Thurston--Bennequin number of the twist knot K2nK_{-2n} with crossing number 2n+12n+1. In this paper we give a complete classification of Legendrian and transverse representatives of twist knots. In particular, we show that K2nK_{-2n} has exactly n22\lceil\frac{n^2}2\rceil Legendrian representatives with maximal Thurston--Bennequin number, and n2\lceil\frac{n}{2}\rceil transverse representatives with maximal self-linking number. Our techniques include convex surface theory, Legendrian ruling invariants, and Heegaard Floer homology.Comment: 27 pages, v3: added figure, other minor changes, to appear in JEM

    Documenting provenance in noncomputational workflows: Research process models based on geobiology fieldwork in Yellowstone National Park

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146402/1/asi24039_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146402/2/asi24039.pd

    Two Planets, One Species: Does a Mission to Mars Alter the Balance in Favour of Human Enhancement?

    Get PDF
    In this chapter we examine the implications of a crewed mission to Mars, possible colonisation of the planet, and the wider implications this may have on genetic enhancement in both a terrestrial and space context. We consider the usage of both somatic and germ-line genetic engineering, and its potential impact on the evolution of Homo sapiens. We acknowledge that a mission to Mars may require the usage of such technologies if it is to be successful. Our investigation suggests that the use of such technologies might ultimately be linked with the transformation of our own species. We also consider projected timescales for the development of these genetic enhancements and the ethical questions raised by the possibility of speciation. Cooperation among spacefaring nations in this context and the development of norms for the use of such technologies is desirable

    Berry phases for 3D Hartree type equations with a quadratic potential and a uniform magnetic field

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where T1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 15 pages, no figure

    Large violation of Bell inequalities with low entanglement

    Get PDF
    In this paper we obtain violations of general bipartite Bell inequalities of order nlogn\frac{\sqrt{n}}{\log n} with nn inputs, nn outputs and nn-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the Entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.Comment: Reference [16] added. Some typos correcte

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds

    Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN=19.6\sqrt{s_{NN}} = 19.6 and 200 GeV

    Get PDF
    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity yee<1|y_{ee}|<1 in minimum-bias Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ\rho spectral function for Mee<1.1M_{ee}<1.1 GeV/c2c^{2}. The integrated dielectron excess yield at sNN\sqrt{s_{NN}} = 19.6 GeV for 0.4<Mee<0.750.4<M_{ee}<0.75 GeV/c2c^2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN\sqrt{s_{NN}} = 17.3 GeV. For sNN\sqrt{s_{NN}} = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN\sqrt{s_{NN}} = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure

    Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and ϕ\phi meson in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present high precision measurements of elliptic flow near midrapidity (y<1.0|y|<1.0) for multi-strange hadrons and ϕ\phi meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy sNN=\sqrt{s_{NN}}= 200 GeV. We observe that the transverse momentum dependence of ϕ\phi and Ω\Omega v2v_{2} is similar to that of π\pi and pp, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30%\% and 30-80%\% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ\phi and proton v2v_{2} at low transverse momentum in the 0-30%\% centrality range, possibly indicating late hadronic interactions affecting the proton v2v_{2}.Comment: 7 pages and 4 figures, Accepted for publication in Physical Review Letter

    Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p+pp^\uparrow+p at s=200\sqrt{s}=200 GeV

    Full text link
    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p+pp^\uparrow+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.Comment: 11 pages, 5 figures, 15 tables. Submitted to PR
    corecore