260 research outputs found

    The Relationship between National and Community Antitrust Law: An Overview after the Perfume Cases

    Get PDF
    The European Coal and Steel Community Treaty and the Treaty of Rome have been recognized as transferring the jurisdictional authority to apply antitrust laws to the European Communities. After surveying the impact of these treaties on various sectors, the author argues that it is necessary to subordinate the jurisdictional authority of the Member States in this field to fulfill the objectives of the Common Market

    Panel Discussion

    Get PDF

    Panel Discussion

    Get PDF

    The compressive behaviour of mortar under varying stress confinement

    Get PDF
    The confinement of mortar in masonry under compression is one of the key processes influencing the compressive strength of the composite material. It is triggered by the mismatch of elastic properties between units and mortar, coupled with deformation conformity between the two material phases. In cases where the mortar is particularly deformable compared to the units, this confinement results in a peak stress many times the uniaxial compressive strength of the mortar. Therefore, a careful examination of this effect is critical in understanding the failure mechanisms of masonry in compression.Mortar under compression can be modelled in a damage mechanics context, following the establishment of a) a constitutive stress-strain relation, b) a model for the increase of the compressive failure stress under lateral confinement and c) a model for the development (increase) of the Poisson’s ratio of mortar under different stress levels. The first aspect is approached using established hardening-softening curves used for quasi-brittle materials, such as concrete. The second aspect is dealt with through the adoption of a suitable and sufficiently flexible failure criterion. The third aspect is addressed through fitting against experimental data.The above aspects are expressed in a damage mechanics context, resulting in fast calculations of the compressive stress-strain curves for confined mortar. This approach allows the quantification of the development of damage in compression, the development of the apparent compressive strength and the relation between orthogonal strains in the mortar, leading to a full characterization of the stress, deformation and damage of the material. The analysis results are compared to experimental findings on different mortar types and are used for their interpretation and evaluation. The complexity of the behaviour of confined mortar is demonstrated, motivating the use of advanced numerical models for its accurate simulation and assessment.Peer ReviewedPostprint (author's final draft

    A review on acoustic emission monitoring for damage detection in masonry structures

    Get PDF
    Acoustic emission monitoring is widely used for damage detection in materials research and for site monitoring. Its use for masonry structures is however challenging due to the highly heterogenic nature of masonry and rapid signal attenuation. However, the non-invasive nature and high sensitivity of the technique also provide interesting opportunities, especially for historical masonry structures, to locate damage, identify severity of damage and rate of deterioration. Aim of this paper is to provide an extensive literature review on the application of the acoustic emission technique for masonry structures, addressing specific challenges and recent findings. AE-based methods for damage assessment in masonry are discussed in view of monitoring approaches, wave propagation, source location and crack development under static, fatigue and creep loading. Site applications are discussed for identifying crack location and crack propagation in historical masonry towers, buildings and masonry arch bridges. The paper concludes with future challenges identified in this research field

    Laser scanning, monitoring and analysis of a reconstructed masonry vault

    Get PDF
    Reconstruction of historic building elements is often necessary in adaptive re-use projects. Optimally this is performed with as much original material as can be sal- vaged. However, the use of hydraulic lime mortars in reconstructed masonry can lead to long curing time and excessive deformation under mechanical loadsThe authors would like to thank V. Wirix from Denys NV and F. Noë from VK Engineering for their support of the on-site work, and WTA-NL-VL for the financial supportPostprint (published version

    The confinement of mortar in masonry under compression: experimental data and micro-mechanical analysis

    Get PDF
    The present paper deals with the behavior of several types of mortar in masonry under compression. The quantification of the response of mortar to triaxial confinement afforded by the masonry units in the composite subjected to compressive stresses is paramount in the determination of the peak stress of wallettes and pillars under compression. This behavior is greatly affected by the behavior of the mortar micro-structure and is manifested by the constrained lateral expansion of the mortar in the joint. A series of experimental results is presented, carried out on different assemblages of masonry composites (couplets and wallettes) with different types of masonry units and mortar, ranging in type from pure lime to cement based mortars. These experiments are subsequently simulated numerically using micro-mechanical techniques accounting for the shifting behavior of the Poisson's ratio of the mortar for varying levels of applied compression. Masonry is treated in a micro-mechanical framework as a composite material composed of two macroscopically distinct material phases: units and mortar. The experiments and their simulation provide insight into the complexities of masonry under compression that need to be accounted for in numerical analysis, including a discussion on the progression of damage in each material phase. The results and their analysis are further enriched through a comparative parametric study. A clear difference emerges between the assigned and the apparent Poisson's ratio for the material components.Funding for this work was procured through the GEPATAR project (“GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium” BR/132/A6/GEPATAR), which is financially supported by BRAIN-be, BELSPO (Belgian Research Action through Interdisciplinary Networks, Federal Public Planning Service Science Policy Belgium).Peer ReviewedPostprint (author's final draft

    Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    Get PDF
    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.The authors acknowledge the financial support of the Research Foundation-Flanders (FWO) for the mobility grant offered to Els Verstrynge.info:eu-repo/semantics/publishedVersio

    Application of acoustic emission technique for bond characterization in FRP-masonry systems

    Get PDF
    The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.(undefined

    Characterization of debonding in FRP-strengthened masonry using the acoustic emission technique

    Get PDF
    The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP- and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The effect of hygrothermal conditions on the debonding characteristics and failure mode is also investigated by performing accelerated ageing tests. Accelerated ageing tests resulted in a change of failure mode in GFRP-strengthened specimens which helped in assessment of AE output in different failure modes, but no conclusive strength degradation was observed in the specimens. The results show that the average and cumulative AE energy are correlated to the FRP slip and debonding fracture energy in GFRPstrengthened specimens, respectively. The fracture progress and active debonding mechanisms are characterized using results from the AE technique. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG- and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data. The tests performed in this study are also a contribution towards the application of AE techniques for on-site health monitoring of strengthened masonry structures.Fundação para a Ciência e Tecnologi
    • …
    corecore