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ABSTRACT: The confinement of mortar in masonry under compression is one of the key processes influ-
encing the compressive strength of the composite material. It is triggered by the mismatch of elastic properties
between units and mortar, coupled with deformation conformity between the two material phases. In cases
where the mortar is particularly deformable compared to the units, this confinement results in a peak stress
many times the uniaxial compressive strength of the mortar. Therefore, a careful examination of this effect is
critical in understanding the failure mechanisms of masonry in compression.
Mortar under compression can be modelled in a damage mechanics context, following the establishment of a)
a constitutive stress-strain relation, b) a model for the increase of the compressive failure stress under lateral
confinement and c) a model for the development (increase) of the Poisson’s ratio of mortar under different
stress levels. The first aspect is approached using established hardening-softening curves used for quasi-brittle
materials, such as concrete. The second aspect is dealt with through the adoption of a suitable and sufficiently
flexible failure criterion. The third aspect is addressed through fitting against experimental data.
The above aspects are expressed in a damage mechanics context, resulting in fast calculations of the compressive
stress-strain curves for confined mortar. This approach allows the quantification of the development of damage
in compression, the development of the apparent compressive strength and the relation between orthogonal
strains in the mortar, leading to a full characterization of the stress, deformation and damage of the material.
The analysis results are compared to experimental findings on different mortar types and are used for their
interpretation and evaluation. The complexity of the behaviour of confined mortar is demonstrated, motivating
the use of advanced numerical models for its accurate simulation and assessment.

1 INTRODUCTION

1.1 State of the Art

The compressive behaviour and strength of masonry
is influenced by numerous geometric and material pa-
rameters. Chief among them is the behaviour of the
mortar in the bed joints under the confinement effect
imposed on it by the units. This effect is a function of
the stresses acting in directions perpendicular to the
direction of the compressive load. This confinement
effect can lead to a substantial increase in the appar-
ent compressive strength of the mortar in the joint,
and therefore of the masonry composite.

When studying the behaviour of masonry in com-
pression, the interaction of the units and the mortar
is paramount in understanding and quantifying the
confinement effect. From a numerical standpoint, the
Poisson’s ratio of the mortar is the chief property af-
fecting the lateral expansion of the material. Since
high compressive stress results in practically zero slip
between the units and the mortar, displacement con-
formity can be assumed between the two phases of the

masonry composite. This assumption forms the basis
of many analytical models of unit/mortar interaction
in masonry (Haller 1958, McNary and Abrams 1985).

This phenomenon is demonstrable using numerical
means for the simulation of the masonry composite in
compression, which highlight the role of the assumed
Poisson’s ratio in determining the ultimate stress and
the failure mode (Drougkas et al. 2019). Nevertheless,
measuring the Poisson’s ratio in brittle cementitious
materials, such as concrete and masonry mortars, is
a difficult task (Mohamad et al. 2007, Ottosen 1979).
This problem is compounded by the difficulty in dis-
tinguishing between the elastic component of the lat-
eral deformation of the mortar under compression and
the component resulting from plastic deformation. It
is therefore necessary to also distinguish between the
actual Poisson’s ratio as a material parameter and the
apparent Poisson’s ratio as a measured quantity. The
potentially substantial difference between the actual
and apparent Poisson’s ratios of mortar in masonry
under compression (Drougkas et al. 2019) needs to be
considered when determining the elastic properties of



mortar using, for example, electromechanical or opti-
cal measurements.

This distinction may be considered by adopting a
damage mechanics approach in the behaviour of mor-
tar in compression. By assigning a constitutive law for
the development of the actual Poisson’s ratio and cal-
culating the apparent Poisson’s ratio it is possible to
study this complex effect in depth.

1.2 Objectives

In this paper a damage mechanics approach is devel-
oped in a numerical context and applied to available
experimental data, aiming at simulating the behaviour
of mortar in masonry joints. The main focus of the
model is the simulation of the lateral expansion of
the mortar under vertical loading, governed by a non-
constant Poisson’s ratio. A model for the development
of the Poisson’s ratio under different confinement is
proposed.

The proposed model is tested against experimental
data on cement mortars from the literature and against
data from a recent testing campaign.

2 EXPERIMENTAL DATA

2.1 Overview

Two sets of experimental data are used for the vali-
dation of the proposed model: a) the experiments by
McNary and Abrams (McNary and Abrams 1985) and
b) the experiments by Hayen et al (Hayen et al. 2009),
previously reported by Drougkas et al (Drougkas et al.
2019).

The first set, designated as ‘Series 1’, involves
masonry mortars of the standard types M, S, N, O
(ASTM 2019). Information on the lateral expansion
of these mortars under different levels of confinement
is provided for the M and O varieties, designated here
as mortars M1 and O1.

The second set, designated ‘Series 2’, involves a
similar series of masonry mortars, with variations on
the type of lime and aggregate. Further experimental
investigation is ongoing, with complete data on lateral
expansion being currently available for one type of
mortar under uniaxial compression, designated here
as mortar O2.

The mixtures of the mortars investigated in this pa-
per are presented in Table 1. While not entirely con-
forming to the mix specifications of typical O mor-
tars, the O2 mortar had a similar uniaxial compressive
strength and lateral expansion behaviour as O1.

The experimentally obtained uniaxial compressive
strength fc and the Young’s modulus E of these mor-
tars are given in Table 2.

Overall, the two data sets do not provide full result
data for lateral deformation of mortar under confine-
ment. They have been performed with different ma-
terials, different procedures and the results are pre-

Table 1: Summary of mortar mixtures per weight: cement (C),
lime (L), sand (S) and water-to-cement ratio (W : C).

Mortar C L S W : C
M1 1.00 0.25 3.00 0.55
O1 1.00 2.00 9.00 1.96
O2 1.53 1.00 11.86 1.85

Table 2: Uniaxial compressive strength and Young’s modulus of
mortars.

fc E
(N/mm2) (N/mm2)

M1 mortar 31.1 11600
O1 mortar 6.2 1750
O2 mortar 5.0 713

sented in different ways. However, it was deemed
desirable to attempt the application of the proposed
model to as large a number of cases as possible.

The stresses applied on the samples may be nor-
malized using two different approaches. The confin-
ing stresses σx = σz = σc can be normalized through
division by the vertically applied stress σy. The ap-
plied vertical stress itself may be normalized by divi-
sion by the confined compressive strength fcc regis-
tered for each level of stress confinement. These nor-
malizations are given by the expressions:

β1 =

∣∣∣∣
σc

σy

∣∣∣∣

β2 =

∣∣∣∣
σy

fcc

∣∣∣∣

(1)

Both normalized parameters assume values be-
tween 0.0 and 1.0 and are meaningful for any level
of confinement. Absolute values are considered in the
normalization since compressive stresses are negative
while tensile forces and material properties, such as
fcc, are positive.

The initial and final apparent Poisson’s ratio, de-
fined at the beginning of loading and at peak stress
respectively, are designated νi and ν f . While the be-
haviour of masonry in compression is heavily influ-
enced by the Poisson’s ratio throughout the loading
process, ν f is the parameter that has the greatest in-
fluence in the peak load.

2.2 Series 1 mortar

For the study of the Poisson’s ratio of masonry mor-
tar in compression, the results of the experiments by
McNary are investigated (McNary and Abrams 1985).
This set of results includes four mortars with different
elastic and strength properties under different levels
of lateral stress confinement. Details on the measured
apparent Poisson’s ratio are given for two of these
mortars.



In addition to uniaxial testing, the mortars were
subjected to compression under different levels of lat-
eral stress confinement. This confinement was pro-
vided by testing cylindrical samples in a Hoek cell,
which provides uniform lateral stress confinement.
Deformation measurements were acquired, providing
information on the samples’ apparent Poisson’s ratio.

The apparent Poisson’s ratio ν̂ is plotted against the
normalized applied vertical stress β2 for different lev-
els of lateral compression σc in Figure 1. No informa-
tion on the scatter is provided. For all cases, the ini-
tial Poisson’s ratio is very low, roughly around 0.10,
and increases for higher values of vertical load. This
increase leads the Poisson’s ratio to assume values
higher than what normally admissible in elasticity.
Additionally, it is immediately apparent that for the
same lateral confining stress, the M1 mortar presents
a generally higher apparent final Poisson’s ratio than
the O1 mortar. The reason for this is not clear, but
could potentially be linked to the higher porosity of
the O1 mortar, which results in lower lateral expan-
sion due to pore collapse in compression.
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Figure 1: Experimentally determined apparent Poisson’s ratio
of a) mortar M1 and b) mortar O1 (adapted from McNary and
Abrams 1985).

2.3 Series 2 mortar

Data on the O2 mortar is limited as the lateral expan-
sion behaviour of the material has only been tested
in uniaxial loading conditions in cylindrical samples.
However, the data acquired from the test is valuable
in this investigation.

Three samples of the same material were tested in
uniaxial compression, and the resulting apparent Pois-
son’s ratio is shown in Figure 2. The behaviour of this
mortar is distinctly different from that of the Series 1
mortars. The initial Poisson’s ratio is negligible and
the lateral expansion under compression is only mo-
bilized at around 50% of the peak load. However, the
final Poisson’s ratio is similar to the one obtained for
the O1 mortar, which has similar compressive strength
and Young’s modulus.
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Figure 2: Apparent Poisson’s ratio of O2 mortar.

Additional triaxial compression tests were con-
ducted on the O2 mortar. The obtained confined com-
pressive strength fcc and peak strain εcc are reported
in Table 3.

Table 3: Triaxial compressive test results for O2 mortar.
β1 fcc E εcc
(−) (N/mm2) (N/mm2) (‰)
0.00 5.25 712.7 12.66
0.05 8.68 937.9 23.74
0.10 11.40 1296.7 32.34
0.15 12.96 1168.0 34.02
0.25 15.94 1134.5 43.21

3 NUMERICAL MODEL

3.1 Overview

The mortar samples are modelled using a simple
model for the stress and strain state of the material.
This model simulates the stress state in the mortar
under uniform triaxial compression, as it arises in a
Hoek cell. While stresses through the volume of the



mortar in a masonry joint may not be constant, espe-
cially near the free edges of the joint, they assume rel-
atively uniform values for a substantial proportion of
their volume around the centre of the joint (Drougkas,
Roca, & Molins 2015). Therefore, the approach of
uniform confinement adopted here is considered ad-
equate for the simulation of mortar in masonry joints.

3.2 Basic expressions

The three-dimensional Hooke’s law is used for relat-
ing the effective stress tensor σ with the strain tensor
ε . Disregarding shear stresses, its matrix form reads:

[
εx
εy
εz

]
=

1
E

[ 1 −ν −ν

−ν 1 −ν

−ν −ν 1

][
σx
σy
σz

]
(2)

where E is the Young’s modulus and ν is the actual
Poisson’s ratio. The term effective stress signifies the
stress that is proportional to the strain and is different
from the actual stress. Positive values for stress and
strain indicate tension.

The actual stress in compression is calculated
through the use of a parabolic stress-strain curve
based on fracture energy proposed for concrete (Feen-
stra and Borst 1996). The increase of the compres-
sive strength due to confinement is taken into account
through the use of the Hsieh-Ting-Chen failure crite-
rion (Hsieh et al. 1982). This criterion, based on four
numerical parameters derived from different experi-
mental tests, affords substantial flexibility in the def-
inition of the desired failure criterion and can be de-
generated to other failure curves, such as the Drucker-
Prager criterion. Finally, the variation of the Poisson’s
ratio of mortar as a function of applied load is mod-
elled using a semi-empirical expression (Drougkas
et al. 2019).

Adopting a damage mechanics approach for com-
pression, the actual, or damaged, stress is related to
the effective stress from eq. 2 through the use of an
integrity variable. According to the constitutive law
chosen for compression (negative stress), this vari-
able is calculated according to the piecewise parabolic
equation (Drougkas et al. 2019):

C (ε)=





1 i f 0≤ ε ≤ εl

− fc
σ




1
3 +

4
3

ε−εl
εc−εl
−

2
3

(
ε−εl
εu−εl

)2


 i f εl ≤ ε ≤ εc

− fc
σ

(
1−
(

ε−εc
εu−εc

)2
)

i f εc ≤ ε ≤ εu

0 i f εu ≤ ε

(3)

where fc is the compressive strength, ε is the strain
and σ is the effective stress in the direction being eval-
uated. The actual stress tensor σd is derived from σ

through:

σd = σC (ε) (4)

Damage is isotropic, meaning that reduction of
stiffness due to damage in one direction leads to the
same reduction in stiffness in all loading directions.
The strain εl is the limit of proportionality in com-
pression:

εl =−
1
3

fc

E
(5)

εc is the peak strain:

εc =−
5
3

fc

E
(6)

and εu is the ultimate strain:

εu = εc−
3
2

G f
c

fcl
(7)

where G f
c is the compressive fracture energy and l

is the characteristic length, here equal to the sample
height, which only affects the post-peak part of the
stress-strain curve.

3.3 Triaxial Confinement of Mortar

The failure criterion, expressed in principal stress
terms, reads:

f = A
J2

fc
2 +B

√
J2

fc
+C

σ1

fc
+D

I1

fc
−1 (8)

where I1 and J2 are the first stress and second devia-
toric stress invariants respectively, expressed as:

I1 = σ1 +σ2 +σ3

J2 =
1
6

(
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
) (9)

and σ1 is the maximum of the principal stresses σ1,
σ2 and σ3. The numerical parameters A, B, C, D are
calculated by solving a linear system of equations de-
rived from eq. 8 for 4 different types of loading: uni-
axial compression, uniaxial tension, biaxial compres-
sion and triaxial compression. The confined compres-
sive strength fcc is calculated by solving eq. 8 for the
given laterally applied confinement stresses.



The increase in the peak stress due to confinement
also results in an increase in the peak strain. This in-
crease is calculated according to the Eurocode 2 ex-
pression for concrete (CEN 2004):

εcc = εc

(
fcc

fc

)2

(10)

The equation for the ultimate strain εu remains un-
changed. This results in a more brittle post-peak re-
sponse for confined mortar, as the energy expended
between peak and ultimate strain does not change.

3.4 Poisson’s Ratio

For the actual Poisson’s ratio ν , the following equa-
tion, a function of the applied vertical stress, is here
proposed:

ν (β2) =
(
ν f −νi

)
β2

3 +νi (11)

where νi and ν f are the initial and final Poisson’s ra-
tios, the latter registered at peak stress. For the Series
1 mortars examined in this paper, a value of 0.10 is
taken for νi, while 0.00 is considered for the Series 2
mortar. The value of ν f is, in turn, expressed as:

ν f (y) = y(t)
fcc

fc
(12)

where y is the vertical abscissa of a quadratic Bézier
curve and t is its time parameter, tracing the curve
from beginning to end through variation from 0 to 1.
The horizontal abscissa x is:

x = εcc (13)

while for y(t) the piecewise equation is proposed:

y(t)=





y1 i f 0≤ x≤ x2
(1− t)((1− t)y1 + y2t)
+t ((1− t)y2 + y3t) i f x2 ≤ x≤ x3

y3 i f x3 ≤ x

(14)

Inversely to the way in which Bézier curve equa-
tions are normally expressed, the time parameter t is
expressed as a function of the horizontal abscissa x as:

t (x) =

√
(x− x1)+ x22 + x(x1−2x2)− x2 + x1

x3−2x2 + x1
(15)

The value of t (x) can be plugged into eq. 14 in or-
der to obtain the value of the vertical abscissa.

In its quadratic form, a Bézier curve is char-
acterized by three control points: a starting point
P0 (x0,y0), an intermediate point P1 (x1,y1) and an end
point P2 (x2,y2). The curve connects the end points
P0 and P2, while P1 serves as a control point, which
does not necessarily lie on the curve. Bézier curves
allow for enhanced flexibility and mathematical con-
venience in interpolating experimental data compared
to polynomial curves. Further, the numerical parame-
ters of the curve, namely the abscissae of the control
points, can be directly related to the physical param-
eters being modelled and evaluated. Hence the adop-
tion of this approach in this paper.

The coordinates for the Bézier curve control points
for fitting the experimental data are presented in Ta-
ble 4.

Table 4: Coordinates of control points for actual Poisson’s ratio
of mortar ν model.

x0 0.005 y0 2.000
x1 0.005 y1 0.200
x2 0.025 y2 0.200

3.5 Analysis Procedure

For a linear elastic analysis the relevant material prop-
erties and applied stresses or strains can be simply
plugged in eq. 2 and solving the system of linear equa-
tions. In the case of a non-linear analysis, the system
of equations is solved in steps of applied strain in the
vertical y direction. The system of equations F(Xn) is
solved iteratively for each load step using a Newton
algorithm:

Xn+1 = Xn− JF (Xn)
−1 F(Xn) (16)

where n is the iteration number and JF(Xn) is the Ja-
cobian matrix. The variables assembled in the Xn ten-
sor are the stresses, strains, integrity variables in com-
pression and the actual Poisson’s ratio of the material
as previously defined in the description of the analyt-
ical model.

Due to the analytical formulation of the problem
using a small system of simple linear equations, the
non-linear analysis can be executed with very low
computational cost.

In the first iteration of every load step, the integrity
variable and Poisson’s ratio of the previous step is
used. At every subsequent iteration executed, trial val-
ues are calculated for the integrity variable C and the
Poisson’s ratio ν according to the stress and strain
increment. These trial values are compared with the
initial values for which the iteration is executed. The
convergence criterion is considered satisfied when the
trial and actual values differ by less than 0.1%. For ap-
plied strain load steps equal to 0.0001, convergence is
typically reached within 15 iterations.



From eq. 11 it is possible to determine the actual
Poisson’s ratio ν of the material. The apparent Pois-
son’s ratio is calculated in the analysis according to
the standard definition of the negative ratio of lateral
over vertical deformation:

ν̂ =−εx

εy
(17)

In the absence of relevant data, the compressive
fracture energy is given a nominal value, calculated
as (Drougkas et al. 2015):

G f
c = fcd (18)

where d is a ductility index equal to 1mm.

4 NUMERICAL ANALYSIS RESULTS

4.1 Overview

The predictive capacity of the proposed model for the
final apparent Poisson’s ratio is checked. The results
of the analytical models compared to the experimen-
tal data are presented in Figure 3. Good overall coin-
cidence is obtained between the piecewise expression
and the experimental data.
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Figure 3: Comparison of analytical model for ν f with experi-
mental data for M1, O1 and O2 mortars.

4.2 Series 1 mortars

Initially, the assumption for the increase in the peak
strain due to confinement according to eq. 10 is
checked. The experimentally determined stress-strain
graphs of the M1 and O1 mortars and their comparison
with the model results are presented in Figure 4.

While the experimentally determined curves for the
O1 mortar are not completely reported, a good match
is obtained for the O1 mortar up to the peak. The very
short post-peak response reported in the O1 mortar

tests indicates that a lower value for the compressive
fracture energy should be used. However, conclusive
remarks cannot be made in this aspect due to the ab-
sence of a complete post-peak curve from the tests as
reported. Therefore, no adjustment was deemed nec-
essary at this point.
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Figure 4: Comparison of experimentally determined (solid lines)
and numerically derived (dashed lines) stress-strain curves: a)
mortar M1 and b) mortar O1 (experimental data adapted from
McNary and Abrams 1985).

The comparison of the experimentally determined
and numerical derived apparent Poisson’s ratio is pre-
sented in Figure 5. The model is able to calculate the
initial and final apparent Poisson’s ratio of the mor-
tar with good accuracy for most cases, while inter-
mediate values are captured well in the cases where
the experimental behaviour presents a regular pattern.
It successfully captures the overall difference in the
resulting values between the two types of mortar in
Series 1.

4.3 Series 2 mortar

The stress-strain curves obtained experimentally and
numerically for the O2 mortar are compared in Fig-
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Figure 5: Comparison of experimentally determined (solid lines)
and numerically derived (dashed lines) apparent Poisson’s ratio:
a) mortar M1 and b) mortar O1.

ure 6. The compressive fracture energy used in the
model was calculated as for the Series 1 mortars, with
a very good fit being obtained in this case with the
experimental data. More importantly, the peak strain
has been calculated with good accuracy and a com-
plete post-peak curve has been registered.
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Figure 6: Comparison of experimental and numerically derived
stress strains curves for O2 mortar.

The proposed model is additionally evaluated in
terms of predicted Poisson’s ratio compared to the
experimental average. This comparison is illustrated
in Figure 7. Assuming a value of 0.00 for νi, a good
prediction of the behaviour of the mortar is obtained,
mainly in terms of ν f at peak load. According to the
proposed model, the value elected for νi does not af-
fect the ν f parameter, and therefore has no real influ-
ence on the peak load. It may, nevertheless affect the
mode of damage initiation in the masonry composite.
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Figure 7: Comparison of analytical model for ν f with experi-
mental data for O2 mortar.

Finally, the numerically calculated confined com-
pressive strength fcc and peak strain εcc are presented
in Table 5. An excellent approximation of both val-
ues is achieved for nearly the entire range of β1 in-
vestigated in the experiments (compare with Table 3).
The only notable discrepancy is obtained for a value
β1 = 0.25, where a lower than anticipated peak strain
was obtained in the experiments.

Table 5: Numerical results for O2 mortar: compressive strength
and peak strain under confinement.

β1 fcc εcc
(−) (N/mm2) (‰)
0.00 5.25 11.88
0.05 6.66 25.50
0.10 8.26 32.34
0.15 10.30 30.14
0.25 16.10 68.00

5 CONCLUSIONS

A model for the development of the Poisson’s ratio
of mortar under compression is proposed. It is imple-
mented in a numerical damage mechanics context and
compared to relevant experimental results. The model
accounts for the shift in compressive behaviour and
lateral expansion of mortar under different levels of



stress confinement. A variety of mortar types are in-
vestigated, the main characteristics of their response
being successfully captured by the model.

The distinction between the Poisson’s ratio of mor-
tar as a material property and as an apparent value is
important. While differences in the two parameters in
stand-alone samples may not be substantial, the dif-
ferences in masonry joints need to be considered.

Further work focusing on lime-based mortars is re-
quired. Confinement effects are more pronounced in
masonry made with deformable mortars with low or
zero cement content due to the increased relative de-
formability of the mortar compared to the units. The
initial Poisson’s ratio may also be substantially dif-
ferent from the values encountered in cement mortars
due to differences in porosity.
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